

UNIT 5 DERIVATIVES

UNIT 5 JEOPARDY

Category 1-10 Points

What is the limit definition of a derivative?

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Category 1 - 20 Points

What is the quotient rule?

$$
\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{[g(x)]^{2}}, g(x) \neq 0
$$

Category 1 - 30 Points

- Find $f^{\prime}(x)$ if $f(x)=\frac{2 x-1}{4 x+3}$

$$
\begin{gathered}
=\frac{(4 x+3)(2)-(2 x-1)(4)}{(4 x+3)^{2}} \\
=\frac{10}{(4 x+3)^{2}}
\end{gathered}
$$

Category 1 - 40 Points

$$
\begin{aligned}
& \text { Let } f(x)=(2 x+3)\left(x^{3}+4\right)^{2} \text {. Find } f^{\prime}(x) \\
& \begin{array}{l}
=(2 x+3)\left(2\left(x^{3}+4\right)\left(3 x^{2}\right)\right)+\left(x^{3}+4\right)^{2}(2) \\
f^{\prime}(x)=(2 x+3)\left(6 x^{2}\left(x^{3}+4\right)\right)+\left(x^{3}+4\right)^{2}(2) \\
=(2 x+3)\left(6 x^{5}+24 x^{2}\right)+2\left(x^{3}+4\right)^{2}
\end{array}
\end{aligned}
$$

Category 1-50 Points

- Find $f^{\prime}(x)$ given that

$$
\begin{array}{r}
f(x)=\frac{2}{\sqrt[3]{x^{2}+4}} \\
f^{\prime}(x)=\frac{-4 x}{3\left(x^{2}+4\right)^{4 / 3}}
\end{array}
$$

Category 2-10 Points

Find the derivative of

$$
\begin{gathered}
f(x)=\sqrt[3]{x} \\
f(x)=x^{1 / 3} \\
f^{\prime}(x)=\frac{1}{3} x^{-2 / 3}=\frac{1}{3 \sqrt[3]{x^{2}}}
\end{gathered}
$$

Category 2-20 Points

Find the derivative of

$$
\begin{aligned}
& f(x)=4 x^{3}+6 \sqrt{x}-6 x^{\frac{7}{6}} \\
& f^{\prime}(x)=12 x^{2}+\frac{3}{\sqrt{x}}-7 x^{\frac{1}{6}}
\end{aligned}
$$

Category 2 - 30 Points

Find the derivative of

$$
f(x)=5 v^{3}-\sqrt[4]{v}
$$

$$
\begin{aligned}
& f^{\prime}(x)=15 v^{2}-\frac{1}{4 v^{3 / 4}} \\
& f^{\prime}(x)=15 v^{2}-\frac{1}{4 \sqrt[4]{v^{3}}}
\end{aligned}
$$

Category 2-40 Points Find the derivative of

$$
\begin{aligned}
p(t) & =12 t^{4}-6 \sqrt{t}-\frac{5}{t} \\
p^{\prime}(t) & =48 t^{3}-3 t^{-\frac{1}{2}}+5 t^{-2} \\
p^{\prime}(t) & =48 t^{3}-\frac{3}{\sqrt{t}}+\frac{5}{t^{2}}
\end{aligned}
$$

Category 2 - 50 Points

Find the derivative of

$$
\begin{aligned}
& f(x)=-\frac{3}{4 x}+\frac{4}{x^{3}}-\frac{x^{4}}{8} \\
& =-\frac{3}{4} x^{-1}+4 x^{-3}-\frac{x^{4}}{8} \\
& f^{\prime}(x)=\frac{3}{4 x^{2}}-\frac{12}{x^{4}}-\frac{1}{2} x^{3}
\end{aligned}
$$

Category 3-10 Points

Find the derivative using the limit definition

$$
f(x)=7
$$

$$
=0
$$

Category 3-20 Points

Find the derivative using the limit definition

$$
f(x)=2 x+3
$$

$$
=2
$$

Category 3 - 30 Points

Find the derivative using the limit definition

$$
f(x)=x^{2}+2 x+3
$$

$$
=2 x+2
$$

Category 3-40 Points

Find the derivative using the limit definition

$$
f(x)=\sqrt{x+5}
$$

$$
=\frac{1}{2 \sqrt{x+5}}
$$

Category 3 - 50 Points

Find the derivative using the limit definition

$$
\begin{aligned}
& f(x)=\frac{2}{x+1} \\
& =\frac{-2}{(x+1)^{2}}
\end{aligned}
$$

Category 4-10 Points

What constants are used for acceleration due to gravity for $\mathrm{ft} / \mathrm{sec}$ and $\mathrm{m} / \mathrm{sec}$?

$$
-32 f t / \sec ^{2} \text { and }-9.8 m / \sec ^{2}
$$

Category 4-20 Points

Given the position function $s=-16 t^{2}+560$, find the velocity at $\mathrm{t}=3$.

$$
=-96 \mathrm{ft} / \mathrm{sec}
$$

Category 4-30 Points

A rock is shot straight up in the air with a sling shot. It had a speed of $600 \mathrm{~m} / \mathrm{s}$. The row is launched with an initial height of 3 m .

What is the equation relating its height as a function of time?

$$
h(t)=-4.9 t^{2}+600 t+3
$$

Category 4-40 Points

Find when the velocity function is at rest.

$$
s(t)=\frac{2}{3} t^{3}-6 t^{2}+16 t-10
$$

At 2 and 4 sec

Category 4-50 Points

The position of a particle is given by $s(t)=-16 t^{4}+18 t^{3}+50 t$, where s is the measured in feet and \mathbf{t} is measured in seconds. Find the acceleration at $t=3$.

Category 5-10 Points

Find the equation of the line tangent to $f(x)=-2 x^{2}+9 x+1$ at

$$
x=3
$$

$$
\begin{aligned}
& y-10=-3(x-3) \\
& y=-3 x+19
\end{aligned}
$$

Category 5-20 Points

Find the tangent to the curve $f(x)=3 x^{2}-2$ at $x=1$

$$
\begin{aligned}
& y-1=6(x-1) \\
& y=6 x-5
\end{aligned}
$$

Category 5-30 Points

$$
\begin{aligned}
& \text { Find the derivative at } x=1 \\
& \begin{aligned}
f(x) & =x^{4}-2 x^{3}+4 \sqrt{x} \\
& =4 x^{3}-6 x^{2}+\frac{2}{\sqrt{x}} \\
& =4(1)^{3}-6(1)^{2}+\frac{2}{\sqrt{1}} \\
& =0
\end{aligned}
\end{aligned}
$$

Category 5-40 Points

Find the equation of the line tangent to the given function.

$$
f(x)=(x+1)\left(4 x^{2}+2 x-1\right) ;(3,-12)
$$

$$
\begin{aligned}
& y+12=145(x-3) \\
& y=145 x-447
\end{aligned}
$$

Category 5-50 Points

Find the equation of the line tangent to the given function in point slope form.

$$
g(x)=\frac{3 x-1}{2 x^{2}+4} ; x=-2
$$

$$
y+\frac{7}{12}=-\frac{5}{36}(x+2)
$$

