Unit 4 Review Day

	0_{0}^{9}	$f(x)=$	$x^{2}-4$	
Domain: $\begin{gathered} \left(-\infty,-\frac{7}{2}\right) \cup\left(-\frac{7}{2},-2\right) \\ \cup(-2, \infty) \end{gathered}$	Range: $\begin{gathered} \left(-\infty,-\frac{4}{3}\right) \cup\left(-\frac{4}{3}, \frac{1}{2}\right) \\ \cup\left(\frac{1}{2}, \infty\right) \end{gathered}$	Vertical Asymptote: \mathbf{x} $=-7 / 2$	Horizontal Asymptote: $y=1 / 2$	Removable POINT: $(-2,-4 / 3)$
X-intercept: $(2,0)$	Y-intercept: $(0,-2 / 7)$	Increasing: $\begin{gathered} \left(-\infty,-\frac{7}{2}\right) \cup\left(-\frac{7}{2},-2\right) \\ \cup(-2, \infty) \end{gathered}$	Decreasing: NONE	Hole: $(-2,-4 / 3)$
Infinite discont.: $X=-7 / 2$	$\begin{gathered} \lim _{x \rightarrow \infty} f(x) \\ 1 / 2 \end{gathered}$	$\begin{gathered} \lim _{x \rightarrow-\infty} f(x) \\ 1 / 2 \end{gathered}$	$\begin{gathered} \lim _{x \rightarrow-2} f(x) \\ -4 / 3 \end{gathered}$	$\lim _{x \rightarrow-\frac{7}{2}} f(x)$ DNE
Absolute Min: NONE	Absolute Max: NONE	Relative Min: NONE	Relative Max: NONE	Continuous? NO!

Questions on last night's HW?

-Packet p. 10-12

Tonight's HW

- Test Review sheet (Potatoes one)

Unit 4 Summary

Domain: Consider the vertical asymptotes and the \mathbf{x}-value of the hole (if they exist) and x-intercept (esp. for sq. roots)
Range: Consider the horizontal asymptotes and the y-value of the hole (if they exist) and x-intercept (esp. if HA: $y=0$)

Limits: Consider holes, horizontal asymptotes, end behavior

y-intercept: Set $\mathbf{x}=\mathbf{0}$ and solve for \mathbf{y}.

Min/Max:

Y-value occurs at x-value

Inc/Dec:

Write in terms of x-values! Use brackets for max/min

Unit 4 Summary (continued)

A function is EVEN if $f(-x)=f(x)$-> Symm. over y -axis A function is ODD if $f(-x)=-f(x)$-> Symm. about origin

Combinations and Compositions

- Add: $\quad(\mathrm{f}+\mathrm{g})(\mathrm{x})=\mathrm{f}(\mathrm{x})+\mathrm{g}(\mathrm{x})$

Subtract: $(f-g)(x)=f(x)-g(x)$

- Multiply: $(f \cdot g)(x)=f(x) \cdot g(x)$
$>$ Divide: (f / g) $(\mathrm{x})=\mathrm{f}(\mathrm{x}) / \mathrm{g}(\mathrm{x})$
$(f \circ g)(x)=f(g(x))$ *consider domain of $g(x)$ and $f(g(x))$
$(g \circ f)(x)=g(f(x))$ *consider domain of $f(x)$ and $g(f(x))$

More Limits Practice Sheet

Test Review Scavenger Hunt Game

Quiz Corrections

- On a NEW sheet of notebook paper
- Required if below 80% on Quiz
- Use table format (see side board)
- Show your work for completing them (graph, diagram, etc), NOT just answers!
- Ask questions
- When done, work on Test Review HW! ©
-Phones stay in the red pockets until you are completely finished with the Review HW and Quiz Corrections!

Next slides used earlier for Fall '18

Limits Algebraically Practice Sheet

Warm-Up Review Day!

1. Write an equation of a rational function with Removable Discontinuity at 7, Non-Removable Discontinuity at -2, and Horizontal Asymptote of $y=3 / 4$
2. State the following and graph

- Domain:
- Range:

$$
g(x)=\frac{2 x^{2}-10 x+8}{4 x^{2}-4 x}
$$

- x\& y intercepts:
- Removable Discontinuity:
- Non-Removable Discontinuity:
- Horizontal Asymptote:
- Limits at discontinuities:
- End Behavior using limits:

Warm-Up Answers

1. Write an equation of a rational function with Removable Discontinuity at 7, Non-Removable Discontinuity at -2, and Horizontal Asymptote of $\mathrm{y}=3 / 4$

$$
\begin{aligned}
& \text { Example: } \\
& f(x)=\frac{3 x(x-7)}{4(x-7)(x+2)}
\end{aligned}
$$

State the following and graph
Domain: $(-\infty, 0) \cup(0,1) \cup(1, \infty)$

- Range: $(-\infty,-3 / 2) \cup(-3 / 2,1 / 2) \cup(1 / 2, \infty)$
>x\& y intercepts: x-int: $(4,0) \quad y$-int: NONE
- Removable Discontinuity: Hole: (1,-3/2)
- Non-Removable Discontinuity: VA: $\mathrm{x}=0$
- Horizontal Asymptote: HA: y=1/2
-Limits at discontinuities:
- End Behavior using limits:

$$
\begin{aligned}
& \lim _{x \rightarrow 1} f(x)=-3 / 2 \\
& \lim _{x \rightarrow \infty} f(x)=1 / 2 \\
& \lim _{x \rightarrow 0} f(x)=D N E \\
& \lim _{x \rightarrow-\infty} f(x)=1 / 2
\end{aligned}
$$

Practice Review Day

Using the graph of $f(x)$ below, find the following limits.

1. $\lim _{x \rightarrow-5} f(x)$
2. $\lim _{x \rightarrow-3} f(x)$
3. $\lim _{x \rightarrow-\infty} f(x)$ $x \rightarrow-\infty$
4. $\lim f(x)$
$x \rightarrow 0^{-}$
5. $\lim _{x \rightarrow \infty} f(x)$
6. $\lim f(x)$
$x \rightarrow 0$
7. $f(-5)$

Practice Review Day (continued)

Write an equation for the graphed rational function.
8.

Hole $(3,5)$
9.

Hole (-5, -1/2)

Practice Review Day: ANSWERS

Using the graph of $f(x)$ below, find the following limits.

1. $\lim _{x \rightarrow-5} f(x)=1$
2. $\lim _{x \rightarrow-3} f(x)=3$
3. $\lim _{x \rightarrow-\infty} f(x)=\infty$
4. $\lim _{x \rightarrow 0^{-}} f(x)=5$
5. $\lim _{x \rightarrow \infty} f(x)=0$
6. $\lim f(x) \quad D N E$
$x \rightarrow 0$
7. $f(-5)=-1$

Practice Review Day: ANSWERS

Write an equation for the graphed rational function.
8.

Hole $(3,5)$

$$
y=\frac{(x-3)(x+2)}{(x-3)}
$$

Hole (-5, -1/2)

$$
y=\frac{(x+5)}{(x+5)(x+3)}
$$

Mr. Potato Head Review

With your assigned group of 3 or 4

- 1 person can pick up a set of questions and a Mr. Potato Head
- After you complete each set, you may check your answers with me. If all are correct, you will choose 1 piece to add to Mr. Potato Head
- We will judge the best Mr. Potato Head at the end of class!

Midterm Review Packet

Using the graph of $f(x)$ below, find the following limits.

1. $\lim _{x \rightarrow 1} f(x)$
2. $\lim _{x \rightarrow 1^{-}} f(x)$
3. $\lim _{x \rightarrow-4} f(x)$
4. $\lim _{x \rightarrow-\infty} f(x)$
5. $\lim _{x \rightarrow \infty} f(x)$
6. $\lim f(x)$
$x \rightarrow 6$
7. $f(6)$

Practice ~

$$
g(x)=\frac{\sqrt[3]{x}}{x^{2}-x}
$$

State the following and make a graph

- Domain:
- Range:
- x \& y intercepts:
- Max and Min:
- Increasing:
- Decreasing:
- Limits at discontinuities:
- End Behavior using limits:

Practice ANSWERS ~

State the following and sketch a graph

$$
g(x)=\frac{\sqrt[3]{x}}{x^{2}-x}
$$

- Domain: $(-\infty, 0) \cup(0,1) \cup(1, \infty)$ VA: $\mathrm{x}=0 \quad \& \mathrm{x}=1$
- Range: $\quad(-\infty, 0) \cup(0, \infty)$

To see the Max and the two VAs, adjust window:
$>x$ \& y intercepts: NONE X-min: -5 X-max: 5 Y-min: -5 $\quad Y$-max: 5
\rightarrow Max and Min: max of -3.07 at $x=0.4$; min.: none

- Increasing: (0,0.4]
- Decreasing: $(-\infty, 0) \cup[0.4,1) \cup(1, \infty)$
- Limits at discontinuities: $\lim _{x \rightarrow 0} f(x)=-\infty \quad \lim _{x \rightarrow 1} f(x)=$ DNE
- End Behavior using limits:

$$
\lim _{x \rightarrow \infty} f(x)=0 \quad \lim _{x \rightarrow-\infty} f(x)=0
$$

