\qquad

HW After Test Unit 3

Algebra Review: Factoring \& Evaluating Functions

Part A) Factoring Quadratics

Read the following example problem to review Solving by Factoring then complete the examples below.

Example $2 x^{2}+5 x-12=0$

1) There is no GCF in this example.
2) $a^{*} c=1$ st $\#$ Last \# $a * c=2 *-12=-24$
3) __- * __- $=\mathrm{a}$ * $\mathrm{c} \quad \underline{8}$ * $\underline{-3}=-24$
$-\ldots+\ldots \quad \underline{8}+\underline{-3}=5$
4) So then $\quad 2 x^{2}+5 x-12$
becomes $2 x^{2}+8 x+-3 x-12$
5) The GCF of $2 x^{2}+8 x$ is $2 x$

The GCF of $-3 x-12$ is -3
So now our polynomial is

$$
2 x(x+4)-3(x+4)
$$

$(2 x-3)(x+4)$
6) $2 x-3=0 \quad x+4=0$

$$
x=3 / 2 \quad x=-4
$$

Steps explained here:

1) Look for a GCF. If there is one, factor it out to the front.
2) Multiply $a^{* c}$. Remember "a" is the $1^{\text {st }}$ coefficient (the one in front of x^{2}) and " c " is the constant (the plain number).
3) Find two other numbers that multiply to equal a*c AND that also add up to equal b (the " b " term is the one with x).
4) Use those numbers to "bust the "b" (break up the "b" term) from our original problem into two pieces.
5) Factor by grouping.

To do this, remember you factor out a GCF from the first two terms, then you factor out a GCF from the last two terms. Then, finish by creating a binomial from the two GCFs pulled together * the repeated binomial.
6) To solve, set each factor equal to zero and solve for x.

Solve by factoring. Show your Work! Use separate paper, if needed. (Hint: Remember to ALWAYS look for a GCF first!!)

1. $0=y^{2}-18 y+45$
2. $a^{2}+14 a+24=0$
3. $0=3 y^{2}+24 y+45$
4. $c^{2}+7 c=30$
-_----------_-
5. $3 x^{2}+11 x+6=0$

6. $4 x^{2}-11 x-3=0$

7. $2 x^{2}+x=6$
--_---_-------
8. $8 x^{3}+3 x=-10 x^{2}$

Part B) Factoring Polynomials with Perfect Squares and Perfect Cubes

Difference of Squares
$\mathrm{a}^{2}-\mathrm{b}^{2}=(\mathrm{a}+\mathrm{b})(\mathrm{a}-\mathrm{b})$

Difference of Cubes and Sum of Cubes

$$
a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)
$$

$$
a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)
$$

Examples: Identify the special factoring pattern shown. Then factor completely

Ex D: $2 x^{2}-8$
GCF $1^{\text {st }} \quad 2\left(x^{2}-4\right)$
Ex F: $3 x^{3}-81$
GCF $1^{\text {st }} \quad 3\left(x^{3}-27\right)$
Diff. of Squares $2(x-2)(x+2) \quad$ Diff. of Cubes $3(x-3)\left(x^{2}+3 x+9\right)$

Identify the special factoring pattern shown. Then, factor each completely. (Hint: Remember to ALWAYS look for a GCF first - and be sure you can't factor any further!)
9. $x^{2}-16=$ \qquad
11. $x^{3}+27=$ \qquad
17. $32 x^{2}-18=$ = _--_-_--_-_-_-_-
10. $4 x^{2}-16=$ \qquad
12. $x^{3}-64=$ \qquad
13. $3 x^{3}-24=$ \qquad
15. $16 x^{2}+9=$ \qquad
14. $x^{4}-81=$ \qquad
16. $8 x^{3}+125=$ \qquad

Part C) Evaluating Functions

Example: Find $f(4)$ given $f(x)=2 x^{2}-7 x+5$.

Simplify the following completely given $f(x)=2 x^{2}-7 x+5$. Show your work!
19. $f(3)=$ \qquad 20. $f(-3)=$ \qquad
21. $f(3 x)=$ \qquad 22. $f(x+3)=$ \qquad
23. $f(-x)=$ \qquad
24. $f(3-4 x)=$ \qquad

