Summary $\$$ Practice: Rational Functions

A \qquad is an equation that can be written as a \qquad (a fraction)

Types of Discontinuities of Rational Functions

1) Holes
also called

Step 1) \qquad top and bottom
2) \qquad
\qquad any common factors
3) Find root of slashed factor
(in other words, set \qquad
\qquad = 0 and solve)

To find the y-value for the hole, substitute the x-value into the remaining equation (after factoring and crossing out shared factors)
2) Vertical Asymptotes

Are written as
___ =
\qquad
Step 1) \qquad top and bottom
2) \qquad
\qquad any common factors
2) Find root of denominator (in other words, set remaining \qquad = 0 and solve)

There are 3 scenarios) $1^{\text {st }}$, Find degree of top and bottom
Are written as
\qquad = \#
a) small degree $\rightarrow y=$ large degree
b) same degree $\rightarrow y=$ \qquad
c) $\frac{\text { large degree }}{\text { small degree }} \quad \rightarrow$

Rational Functions Practice Remember to show work with Algebra for credit! © For each problem:
a) Find holes, vertical asymptotes, and horizontal asymptotes.
b) Find domain, x-intercept, and y-intercept.

1) $f(x)=\frac{x^{2}-4}{x-2}$
2) $f(x)=\frac{x^{2}-3 x-10}{3 x^{2}-11 x-20}$
3) $f(x)=\frac{x-3}{x^{2}-9}$
4. Find the vertical asymptotes, if any, of the graph of the rational function.

$$
\begin{aligned}
& f(x)=\frac{3}{x^{2}-3 x-4} \\
& x=0 \\
& \bigcirc \quad \text { no vertical asymptotes } \\
& x=4 \text { and } x=-1 \\
& x=4 \text { and } y=-1
\end{aligned}
$$

5. Find the all the asymptotes, if any, of the graph of the rational function.
$f(x)=\frac{x^{3}-1}{x^{2}-9}$
C A. $y=0, x=3, x=0$
C B. $x=3, x=-3$
C
C. $y=x, y=0$

0
D. $y=x, x=3, x=-3$
6. Find the all the asymptotes, if any, of the graph of the rational function.
$f(x)=\frac{x^{3}-27}{x^{2}-9}$
C A. $y=0, x=3, x=0$
C
B. $x=3, x=-3$

0
C. $x=3$
C
D. $x=-3$
7. Find the location of all of the removable discontinuities, if any, of the graph of the rational function.
$f(x)=\frac{x^{3}-27}{x^{2}-9}$
C A. $\quad x=3$
C
B. $x=-3$

0
C. $x=-27$

0
D. none
8. Find the horizontal asymptotes, if any, of the rational function.
$f(x)=\frac{2 x^{2}}{x^{2}+4}$
C
A. $x=2$
C
B. $y=0$

0
C. $y=2$
C
D. no horizontal asymptotes
\qquad

MORE Rational Functions Practice Remember to show work with Algebra for credit! ©

For each problem find the following (if any exist). Remember to give coordinate pairs for holes, x-intercept(s) and y-intercept.
a) Find holes, vertical asymptotes, and horizontal asymptotes.
b) Find domain, x-intercept(s), and y-intercept.
9. $f(x)=\frac{3 x^{2}}{x^{2}-16}$

Hole:
V.A.: \qquad H.A. : \qquad
Domain: \qquad x-int(s): \qquad y-int: \qquad
10. $f(x)=\frac{x^{2}+x-6}{x+3}$

Hole: \qquad V.A.: \qquad H.A.: \qquad
Domain: \qquad x-int(s): \qquad y-int: \qquad
11. $f(x)=\frac{x+8}{x^{2}-64}$

Hole:_ V.A.: \qquad H.A. : \qquad
Domain: \qquad x-int(s): \qquad y-int: \qquad
12. $f(x)=\frac{x+8}{x^{2}+64}$

Hole: \qquad V.A.: \qquad H.A. : \qquad
Domain: \qquad $x-\operatorname{int}(s):$ \qquad y-int: \qquad
13. $f(x)=\frac{x^{3}-8}{x-2}$

Hole: \qquad V.A.: \qquad H.A. : \qquad
Domain: \qquad $x-\operatorname{int}(s):$ \qquad y-int: \qquad
14. $f(x)=\frac{x^{2}+4 x+3}{3 x^{2}+6 x+3}$

Hole: \qquad V.A.: \qquad H.A.: \qquad
Domain: \qquad x-int(s): \qquad y-int: \qquad
15. $f(x)=\frac{x^{3}-1}{x^{2}-1}$

Hole: \qquad V.A. : \qquad H.A. : \qquad
Domain: \qquad $x-\operatorname{int}(s):$ \qquad y-int: \qquad

