Summary & Practice: Rational Functions

1) Holes	Step 1)	top and bottom		
also called	2)	any common factors		
	3)	 Find root of slashed factor (in other words, set = 0 and 		
To find the y-value (after factori	for the hole, sung and crossing	ubstitute the x-value into the remaining equation out shared factors)		
2) Vertical Asymptotes	Step 1)	top and bottom		
Are written as	2)	any common factors		
= #	2)	Find root of denominator (in other words, set remaining = 0 and se	olve)	
3) Horizontal Asymptotes Are written as = #	There ar a)	re 3 scenarios) 1 st , Find degree of top and bottom <u>small degree</u> -> y = large degree		
	b)	same degree -> y =		
	c)	large degree ->		

For each problem:

- a) Find holes, vertical asymptotes, and horizontal asymptotes.
- b) Find domain, x-intercept, and y-intercept.

1)
$$f(x) = \frac{x^2 - 4}{x - 2}$$

2) $f(x) = \frac{x^2 - 3x - 10}{3x^2 - 11x - 20}$
3) $f(x) = \frac{x - 3}{x^2 - 9}$

4. Find the vertical asymptotes, if any, of the graph of the rational function.

$$f(x) = \frac{5}{x^2 - 3x - 4}$$

$$x = 0$$

O no vertical asymptotes

2

- x = 4 and x = -1
- x = 4 and y = -1
- 5. Find the all the asymptotes, if any, of the graph of the rational function.

$$f(x) = \frac{x^{3} - 1}{x^{2} - 9}$$

A. y = 0, x = 3, x = 0
B. x = 3, x = -3
C. y = x, y = 0
D. y = x, x = 3, x = -3

6. Find the all the asymptotes, if any, of the graph of the rational function.

0

$$f(x) = \frac{x^3 - 27}{x^2 - 9}$$

A. y = 0, x = 3, x =
B. x = 3, x = -3
C. x = 3
D. x = -3

7. Find the location of all of the removable discontinuities, if any, of the graph of the rational function.

$$f(x) = \frac{x^{3} - 27}{x^{2} - 9}$$

A. x = 3
B. x = -3
C. x = -27
D. none

8. Find the horizontal asymptotes, if any, of the rational function.

$$f(x) = \frac{2x^2}{x^2 + 4}$$

C A. x = 2
C B. y = 0
C C. y = 2

O D. no horizontal asymptotes

Name: _____

<u>MORE Rational Functions Practice</u> For each problem find the following (if any exist). Remember to give coordinate pairs for holes, x-intercept(s) and y-intercept.

- a) Find holes, vertical asymptotes, and horizontal asymptotes.
- b) Find domain, x-intercept(s), and y-intercept.

9. $f(x) = \frac{3x^2}{2}$	_	Hole:	V.A. :	H.A. :	
x^2-16	6	Domain:		x-int(s):	_ y-int:
10. $f(x) = \frac{x^2 + x}{x+3}$	$\frac{x-6}{-3}$	Hole:	V.A. :	H.A. :	
		Domain:		x-int(s):	_ y-int:
11. $f(x) = \frac{x+8}{x^2-64}$	8 54	Hole:	V.A. :	H.A. :	
		Domain:		x-int(s):	_ y-int:
12. $f(x) = \frac{x+8}{x^2+64}$	8	Hole:	V.A. :	H.A. :	
	04	Domain:		x-int(s):	_ y-int:
13. $f(x) = \frac{x^3 - 8}{x - 2}$	3	Hole:	V.A. :	H.A. :	
		Domain:		_ x-int(s):	_ y-int:
14. $f(x) = \frac{x^2 + 4x}{3x^2 + 6x}$	4x + 3	Hole:	V.A. :	H.A. :	
	$\overline{-6x+3}$	Domain:		x-int(s):	_ y-int:
x^3 –	l	Hole:	V.A. :	HA:	
15. $f(x) = \frac{1}{x^2 - 1}$	- l	Domain:		x-int(s):	v-int:
					- /