\qquad
\qquad
Set 1: Give the domain, range, x and y intercepts of the following functions.

1. $f(x)=\frac{5 x^{2}-30 x}{10 x}$
2. $g(x)=\frac{x-3}{(\sqrt{x-1})}$

Set 2: Determine the type of discontinuities in the functions and state them. Then list any horizontal asymptotes.
3. $f(x)=\frac{x^{2}-16}{x^{3}-64}$
4. $g(x)=\frac{x-3}{2 x^{2}+x-21}$

Set 3:

5. Using the following function, $f(x)=\frac{x^{2}-3 x-18}{x^{2}+x-42}$,
list the domain, range, all discontinuities, and x and y intercepts.

6. For the above function, find the limits:

$$
\lim _{x \rightarrow \infty}=\quad \lim _{x \rightarrow-\infty}=\quad \lim _{x \rightarrow 6}=\quad \lim _{x \rightarrow-7}=
$$

Set 4:

7. Find the x and y intercepts of the function: $f(x)=\frac{3 x-5}{2 x+7}$

8. For the following function $f(x)=x^{3}+2 x^{2}-7 x+3$: Determine all local maximums and minimums. Determine the increasing and decreasing intervals.
9. Write a function that has a horizontal asymptote at $y=2 / 3$, an infinite discontinuity at 4 and
\qquad
\qquad
a removable point of discontinuity at 7 .

Set 5: Given $f(x)=4 x^{2}-x+3$ and $g(x)=\sqrt{x+1}$;
10. Find. $(g \circ f)(x)$ and state its domain in interval notation.

11. Find $(f(g(5))$.
12. Find $g(x+1)-f(4)$.

Set 6: State whether the function is odd, even, or neither. Support graphically and confirm algebraically.
13. $f(x)=\sqrt{x^{3}+x-3}$
14. $\mathrm{f}(\mathrm{x})=\frac{x^{2}+x^{3}}{x^{3}}$

Set 7: Find the following limits based on the function below.
15.

(a) $f(0)=$
(b) $f(2)=$
(c) $f(3)=$
(d) $\lim _{x \rightarrow 0^{-}} f(x)=$
(e) $\lim _{x \rightarrow 0} f(x)=$
(f) $\lim _{x \rightarrow 3^{+}} f(x)=$
(g) $\lim _{x \rightarrow 3} f(x)=$
(h) $\lim _{x \rightarrow-\infty} f(x)=$
\square

