Limits - Graphs for help with notes

$\lim _{x \rightarrow 0} f(x)=$
$\lim _{x \rightarrow 4} f(x)=$
$\lim _{x \rightarrow-4} f(x)=$

Ex: Graph it and write the domain.

What about this one?

Limits at Vertical Asymptotes

Using this example, find the domain and graph it. $f(x)=\frac{x+3}{x-2}$

- Domain
- "Describe" the behavior of the graph as x-values approach the vertical asymptote.

From the left:
From the right:

- How do we do that?????

One-sided limits definitions:

Limit of $f(x)$ as x approaches 2 from the left (negative side):
$\lim _{x \rightarrow 2^{-}} f(x)=$?

Limit of $f(x)$ as x approaches 2 from the right (positive side):
$\lim _{x 2^{+}} f(x)=$?
$x \rightarrow 2^{+}$

Limit of $f(x)$ as x approaches 2 is:

$$
\lim _{x \rightarrow 2} f(x)=?
$$

What are your thoughts on this one?

Using the graph at the right side above, evaluate:
$\lim _{x \rightarrow-2^{-}} f(x)=$
$\lim _{x \rightarrow-2^{+}} f(x)=$

Review:

$\lim _{x \rightarrow 1^{-}} f(x)=$
$\lim _{x \rightarrow 1^{+}} f(x)=$
What about these?

$\lim _{x \rightarrow 1} f(x)=$ $\lim _{x \rightarrow-2} f(x)=$ $\lim _{x \rightarrow-5} f(x)=$ $\lim _{x \rightarrow 0} f(x)=$ $\lim _{x \rightarrow 2} f(x)=$

$\lim _{x \rightarrow-4} f(x)=$	$\lim _{x \rightarrow-4^{-}} f(x)=$
$\lim _{x \rightarrow-1} f(x)=$	$\lim _{x \rightarrow 4} f(x)=$

$f(4)=$
$f(2)=$

Function f is continuous at a point a if the following conditions are satisfied.

