\qquad
First, Read the following Vocabulary and Example Problems on this page.
A matrix is a rectangular array of numbers. A matrix can be named by a capital letter. Some examples are shown below.

$$
A=\left[\begin{array}{ll}
2 & 4
\end{array}\right], B=\left[\begin{array}{r}
-1 \\
3
\end{array}\right], C=\left[\begin{array}{rr}
-1 & 2 \\
3 & -2
\end{array}\right], D=\left[\begin{array}{rrr}
3 & 5 & 1 \\
-2 & 0 & -1
\end{array}\right] \text { Row } 2
$$

Column $1 \quad$ Column 2

The dimensions of a matrix are determined by the number of rows and columns in the matrix. A matrix of dimensions $m \times n$ (read " m by n ") has m rows and n columns. Note that the row comes before the column in matrix notation. So, matrix A has dimensions 1×2 and matrix D has dimensions 2×3.

Scalar multiplication is the process of multiplying each entry in a matrix by a scalar, a real number.
To add or subtract matrices they must have the same dimensions (or size).

Adding and Subtracting Matrices

a. $\left[\begin{array}{r}2 \\ -1 \\ 7\end{array}\right]+\left[\begin{array}{lll}4 & 0 & -6\end{array}\right] \quad$ Since $\left[\begin{array}{r}2 \\ -1 \\ 7\end{array}\right]$
is a 3×1 matrix and $\left[\begin{array}{lll}4 & 0 & -6\end{array}\right]$ is a 1×3 matrix,
you cannot add them.
The sum is called "Undefined"
b. Since both matrices are 2×3, you can subtract them.

$$
\begin{aligned}
{\left[\begin{array}{rrr}
2 & 3 & -5 \\
-1 & 0 & 4
\end{array}\right]-\left[\begin{array}{rrr}
0 & 1 & 3 \\
3 & -2 & -1
\end{array}\right] } & =\left[\begin{array}{rrr}
2-0 & 3-1 & -5-3 \\
-1-3 & 0-(-2) & 4-(-1)
\end{array}\right] \\
& =\left[\begin{array}{rrr}
2 & 2 & -8 \\
-4 & 2 & 5
\end{array}\right]
\end{aligned}
$$

Need more Matrix Addition and Subtraction examples? Check out this site http://www.coolmath.com/algebra/24-matrices/02-adding-subtracting--01

Scalar Multiplication

For the following matrix A, find $2 A$

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]
$$

I just multiply a 2 on every entry in the matrix:

So the final answer is:

$$
2 A=\left[\begin{array}{ll}
2 & 4 \\
6 & 8
\end{array}\right]
$$

Need more Scalar Multiplication examples? Check out this site http://www.coolmath.com/algebra/24-matrices/03-scalar-multiplication-01

Simplify. Write "undefined" for expressions that are undefined. Show work for credit!

1) $-4\left[\begin{array}{ccc}-1 & -5 & 3 \\ -4 & 3 & -6\end{array}\right]$
2) $5\left[\begin{array}{ccc}-1 & 4 & 3 \\ -4 & -2 & 2\end{array}\right]$
3) $\left[\begin{array}{cc}-1 & -1 \\ 5 & 6\end{array}\right]+\left[\begin{array}{cc}6 & -3 \\ 0 & 2\end{array}\right]$
4) $\left[\begin{array}{cc}-6 & 2 \\ 4 & -4\end{array}\right]-\left[\begin{array}{cc}4 & -3 \\ -2 & -2\end{array}\right]$
5) $\left[\begin{array}{c}n^{2}-2 \\ m \\ n+m\end{array}\right]+\left[\begin{array}{c}-3 \\ -4 \\ -2 n\end{array}\right]$
6) $\left[\begin{array}{cc}-3 & 5 \\ -2 & 1 \\ -4 & -6 \\ 6 & 5\end{array}\right]+\left[\begin{array}{l}5 \\ 5 \\ 3\end{array}\right]$
7) $-5\left[\begin{array}{cc}z & -3 z^{2} \\ 0 & -3 x \\ 4 x^{2} & z-4\end{array}\right]$
8) $\left[\begin{array}{cc}5 y & y+5 \\ 2 y & 4 y-2 \\ -3 & x-2\end{array}\right]-\left[\begin{array}{cc}x+3 y & 2 y^{2} \\ 3 y & -4 x \\ -5 x y & x\end{array}\right]$

Use these matrices to perform the indicated operations, if possible. Show work for credit! If not possible, write "undefined" and explain why.
$C=\left[\begin{array}{cc}-3 & 4 \\ 6 & 7\end{array}\right]$
$D=\left[\begin{array}{cc}1 & 0 \\ -4 & 2\end{array}\right]$
$E=\left[\begin{array}{cc}0 & -1 \\ 3 & 9\end{array}\right]$
$N=\left[\begin{array}{cc}1 & 3 \\ -2 & 7 \\ -4 & 6\end{array}\right]$
$O=\left[\begin{array}{cc}1 & 5 \\ 8 & -3 \\ 4 & 9\end{array}\right]$
11. C+D
12. $\mathrm{D}+\mathrm{E}$
13. -2 C
14. $C-E$
15. $\mathrm{N}+\mathrm{E}$
16. 3 N
14. $\mathrm{O}-\mathrm{N}$
18. $\mathrm{O}+\mathrm{C}$

