> | Unit 4 Day 8 |
| :--- |
| |
| Compositions |

Warm Up Day 8

1. $f(x)=4 x^{3} \quad$ 2. $g(x)=2 x^{2}-4 x$
a. $f(-1)=$
a. $-g(x)=$
b. $f(3 x)=$
b. $g(x+y)=$
c. $f(-y)=$
c. $g(-x)=$
2. Write and graph an equation that has the following:
-Nonremovable discontinuity at 5
-Removable discontinuity at -3
-Horizontal asymptote of $y=5 / 2$

Warm Up Day 8 ANSWERS

1. $f(x)=4 x^{3} \quad$ 2. $g(x)=2 x^{2}-4 x$
a. $f(-1)=-4 \quad$ a. $-g(x)=-2 x^{2}+4 x$
b. $f(3 x)=108 x^{3}$
b. $g(x+y)=$
$2 x^{2}+2 y^{2}+4 x y-4 x-4 y$
c. $f(-y)=-4 y^{3}$
c. $g(-x)=2 x^{2}+4 x$
2. Write and graph an equation that has the following:
-Nonremovable discontinuity at 5
-Removable discontinuity at -3

$$
f(x)=\frac{5(x+3)(x+1)}{2(x+3)(x-5)}
$$

Homework Questions?

Packet p. 6-7

Announcements :)

- Quiz Unit 4 \#1 Corrections due Thurs $3 / 22$
- If you complete those corrections \& do better on Unit 4 Test, the Unit 4 Test grade can replace that quiz Grade
- Tutorials for credit due Friday 3/23!
- Tutorials are
- Most mornings at 7 AM
- Monday \& Wednesday $1^{\text {st }}$ half lunch
- Make-Up work due Monday 3/26!
- Reminder: Midterm is Tuesday 3/27
- Midterm Packet due!

Notes:

Symmetry, Even \& Odd Functions, Function Composition

Symmetry:
About the y-axis

- Example: $f(x)=x^{2}$

Graph:

- A function is EVEN if it is symmetrical about the y-axis.
- NON-Example:

$$
f(x)=(x+5)^{2}
$$

Graph:

Symmetry with respect to the y-axis - A.k.a. Reflection about y-axis

- To prove a function is even algebraically, show that

$$
f(-x)=f(x)
$$

- Ex: $f(x)=x^{n}$
where n is even

Determining Algebraically if a function is Even, Odd, or Neither

- Prove whether $f(x)=x^{4}$ is even, odd, or neither.
- We'll check if $f(-x)=f(x)$

Determining Algebraically if a function is Even, Odd, or Neither

- Prove whether $f(x)=x^{4}$ is even, odd, or neither.
- We'll check if $f(-x)=f(x)$

$$
\begin{aligned}
& f(-x)=(-x)^{4}=x^{4} \\
& f(-x)=f(x) \\
& \therefore f(x) \text { is even }
\end{aligned}
$$

Symmetry - Checking in Table

- Note: You can often double-check if a function is even in the table
- Example: $f(x)=x^{2}$
- BUT To prove "Even" functions you must

x	$f(x)$
-3	9
-2	4
-1	1
1	1
2	4
3	9

$$
f(-x)=f(x)
$$

Symmetry: x-axis

- A.k.a. Symmetric with respect to the x-axis.
- Graphs with this symmetry are not usually functions. They are mirrors.
- $(x,-y)$ mirrors (x, y)

x	$f(x)$
9	-3
4	-2
1	-1
1	1
4	2
9	3

Symmetry: About the origin

- Example: $f(x)=x^{3}$

Graph:

- A function is ODD if it is symmetrical about the origin.

- NON-Example:

$$
f(x)=x^{3}+1
$$

Graph:

Symmetry about the Origin

- A.k.a. Symmetric with respect to the origin.
- Can be seen as Rotation about origin 180°.
- To prove odd functions algebraically show that :

$$
f(-x)=-f(x)
$$

- Ex: $f(x)=x^{n}$ where n is odd.

Determining Algebraically if a function is Even, Odd, or Neither

- Prove whether $f(x)=x^{5}$ is even, odd, or neither.
- $1^{\text {st }}$ we'll check if $f(-x)=f(x)$
- $2^{\text {nd }}$ we'll check if $f(-x)=-f(x)$

Determining Algebraically if a function is Even, Odd, or Neither

- Prove whether $f(x)=x^{5}$ is even, odd, or neither.
- $1^{\text {st }}$ we'll check if $f(-x)=f(x)$

$$
\begin{aligned}
& f(-x)=(-x)^{5}=-x^{5} \\
& f(-x) \neq f(x) \therefore f(x) \text { is NOT even }
\end{aligned}
$$

- $2^{\text {nd }}$ we'll check if

$$
f(-x)=-f(x)
$$

$$
-f(x)=-\left(x^{5}\right)=-x^{5}
$$

$$
f(-x)=-f(x) \therefore f(x) \text { is odd }
$$

Symmetry - Checking in Table

- Note: You can often double-check if a function is odd in the table
- Example: $f(x)=x^{3}$
- BUT To prove "Odd" functions you must

x	$f(x)$
-3	-27
-2	-8
-1	-1
1	1
2	8
3	27

$$
f(-x)=-f(x)
$$

Is the function symmetric? If so, determine the symmetry.

$$
f(x)=5+x^{2}
$$

Graph

Algebraic

Is the function symmetric? ANSWER If so, determine the symmetry.

$$
f(x)=5+x^{2}
$$

Graph

Algebraic

$$
\begin{aligned}
& f(-x)=f(x) \\
& \therefore \text { Even }
\end{aligned}
$$

Symmetric about the y-axis

Is the function symmetric? If so, determine the symmetry.

$$
g(x)=3 x-2 x^{3}
$$

Graph

Algebraic

Is the function symmetric? ANSWER If so, determine the symmetry.

$$
g(x)=3 x-2 x^{3}
$$

Graph Algebraic

$$
\begin{aligned}
& g(-x)=-g(x) \\
& \therefore \text { Odd }
\end{aligned}
$$

Symmetric about the origin

Is the function symmetric? If so, determine the symmetry.

$$
h(x)=x^{7}-2
$$

Graph

Algebraic

Is the function symmetric? ANSWER If so, determine the symmetry.

$$
h(x)=x^{7}-2
$$

Graph

Algebraic

$$
\begin{aligned}
& h(-x) \neq-h(x) \\
& h(-x) \neq h(x) \\
& \therefore \text { Neither }
\end{aligned}
$$

You Is the function symmetric? Try! If so, determine the symmetry.

$$
\text { 3. } g(x)=\frac{x^{3}}{x^{2}-9} \quad \text { 4. } f(x)=\frac{2 x^{3}}{x-5}
$$

$$
\text { 5. } f(x)=\frac{x}{x^{3}-x}
$$

You Is the function symmetric? Try! If so, determine the symmetry. ANSWER

$$
\begin{aligned}
& \text { 3. } g(x)=\frac{x^{3}}{x^{2}-9} \quad \text { 4. } f(x)=\frac{2 x^{3}}{x-5} \\
& \begin{array}{l}
f(-x)=-g(x) \quad f-f(x) \\
\therefore \text { Odd } \\
\therefore(-x) \neq f(x)
\end{array} \\
& \text { 5. } f(x)=\frac{x}{x^{3}-x} \\
& \therefore \text { Neither } \\
& f(-x)=f(x) \\
& \therefore \text { Even }
\end{aligned}
$$

Now let's combine functions

Recall function notation!

- If $f(x)=3 x, \quad$ (Simplify when possible)
- Find: $f(4)-f(x)$
o Find: $f(x+1)-x$
- Find: $\frac{f(x+h)-f(x)}{2}$

- If $f(x)=3 x$, (Simplify when possible)
- Find: $f(4)-f(x) \quad 12-3 x$
- Find: $f(x+1)-x \quad 3 x+3-x=2 x+3$
- Find: $\frac{f(x+h)-f(x)}{2} \frac{3 x+3 h-3 x}{2}=\frac{3 h}{2}$

Combinations of Functions

When you add, subtract, multiply, or divide two functions.

- Add:
$(f+g)(x)=f(x)+g(x)$
- Subtract:
$(f-g)(x)=f(x)-g(x)$
- Multiply:
$(f \cdot g)(x)=f(x) \cdot g(x)$
- Divide:
$(f / g)(x)=f(x) / g(x)$

Examples: $f(x)=\frac{3}{x-2}$

$$
g(x)=\frac{3+x}{3}
$$

Add and find the domain:
$(f+g)(x)=f(x)+g(x)$

Multiply and find the domain:
$(f \bullet g)(x)=f(x) \bullet g(x)$

Subtract and find the domain:

$$
(f-g)(x)=f(x)-g(x)
$$

Divide and find the domain:
$(f / g)(x)=f(x) / g(x)$

Examples: $f(x)=\frac{3}{x-2}$

$$
g(x)=\frac{3+x}{3}
$$

Add and find the domain:

$$
\begin{aligned}
&(f+g)(x)=\mathrm{f}(\mathrm{x})+\mathrm{g}(\mathrm{x}) \\
&(f+g)(x)=\frac{3}{x-2}+\frac{3+x}{3} \\
& D:(-\infty, 2) \cup(2, \infty)
\end{aligned}
$$

Multiply and find the domain:
$(f \bullet g)(x)=f(x) \bullet g(x)$
$(f \bullet g)(x)=\left(\frac{3}{x-2}\right)\left(\frac{3+x}{3}\right)$
$D:(-\infty, 2) \cup(2, \infty)$

Subtract and find the domain:

$$
\begin{gathered}
(\mathrm{f}-\mathrm{g})(\mathrm{x})=\mathrm{f}(\mathrm{x})-\mathrm{g}(\mathrm{x}) \\
(f-g)(x)=\frac{3}{x-2}-\left(\frac{3+x}{3}\right) \\
D:(-\infty, 2) \cup(2, \infty)
\end{gathered}
$$

Divide and find the domain:
$(f / g)(x)=f(x) / g(x)$
$(f / g)(x)=\frac{\left(\frac{3}{x-2}\right)}{(3+x)}$
$D:(-\infty,-3) \cup(-3,2) \cup(2, \infty)\left(\frac{3+x}{3}\right)$

Examples:

$$
f(x)=\sqrt{x+4} \quad g(x)=|x+2|
$$

Add and find the domain:
$(f+g)(x)=f(x)+g(x)$

Subtract and find the domain:
$(f-g)(x)=f(x)-g(x)$

Examples:

$$
f(x)=\sqrt{x+4} \quad g(x)=|x+2|
$$

Add and find the domain:

$$
(f+g)(x)=f(x)+g(x)
$$

$$
(f+g)(x)=\sqrt{x+4}+|x+2|
$$

$$
D:[-4, \infty)
$$

Subtract and find the domain:

$$
(f-g)(x)=f(x)-g(x)
$$

$$
(f-g)(x)=\sqrt{x+4}-|x+2|
$$

$$
D:[-4, \infty)
$$

Examples:

$$
f(x)=\sqrt{x+4} \quad g(x)=|x+2|
$$

Multiply and find the domain: Divide and find the domain: $(f \bullet g)(x)=f(x) \bullet g(x)$ $(f / g)(x)=f(x) / g(x)$

Examples:
 $$
f(x)=\sqrt{x+4} \quad g(x)=|x+2|
$$

Multiply and find the domain: Divide and find the domain:

$$
(f \bullet g)(x)=f(x) \bullet g(x) \quad(f / g)(x)=f(x) / g(x)
$$

$$
(f \bullet g)(x)=\sqrt{x+4} \cdot|x+2|
$$

$$
D:[-4, \infty)
$$

$$
\begin{aligned}
& (f / g)(x)=\frac{\sqrt{x+4}}{|x+2|} \\
& D:[-4,-2) \cup(-2, \infty)
\end{aligned}
$$

Compositions

Let $f \& g$ be two functions such that the domain of f intersects the range of g.

$$
(f \circ g)(x)=f(g(x)) \quad(g \circ f)(x)=g(f(x))
$$

Domain of $(f \circ g)(x)=$

- Intersection of the domain of $g(x)$ with the domain of $f(g(x))$.

Domain of $(g \circ f)(x)=$

- Intersection of the domain of $f(x)$ with the domain of $g(f(x))$.

$$
\begin{array}{ll}
\text { Compositions } \\
\begin{array}{ll}
f(x)=x^{2} & g(x)=4-3 x \\
(f \circ g)(x)=f(g(x)) & (g \circ f)(x)=g(f(x))
\end{array}
\end{array}
$$

Domain:
Domain:

Compositions

$$
\begin{array}{cc}
f(x)=x^{2} & g(x)=4-3 x \\
(\mathrm{f} \circ \mathrm{~g})(\mathrm{x})=\mathrm{f}(\mathrm{~g}(\mathrm{x})) & (\mathrm{g} \circ \mathrm{f})(\mathrm{x})=\mathrm{g}(\mathrm{f}(\mathrm{x})) \\
f(g(x))=(4-3 x)^{2} & g(f(x))=4-3 x^{2}
\end{array}
$$

Domain:

$$
D:(-\infty, \infty)
$$

Domain:

$$
D:(-\infty, \infty)
$$

Find the domain of $g(f(x))$?

$$
f(x)=\sqrt{x+5} \quad g(x)=x^{2}-3
$$

What numbers can't you substitute in to $g(f(x))$? Does your domain agree?

Find the domain of $g(f(x))$?

$$
\begin{gathered}
f(x)=\sqrt{x+5} \quad g(x)=x^{2}-3 \\
g(f(x))=(\sqrt{x+5})^{2}-3 \\
D:[-5, \infty)
\end{gathered}
$$

Evaluate: $g(f(-9))$

What numbers can't you substitute in to $g(f(x))$? Does your domain agree?

$$
\begin{array}{cl}
\begin{array}{c}
\text { Compositions } \\
f(x)=x^{2}-1
\end{array} & g(x)=\frac{1}{x-1} \\
\hline(f \circ g)(x)=f(g(x)) & (g \circ f)(x)=g(f(x))
\end{array}
$$

Domain:
Domain:

$$
\begin{array}{cl}
\begin{array}{c}
\text { Compositions } \\
f(x)=x^{2}-1
\end{array} & g(x)=\frac{1}{x-1} \\
\hline(f \circ g)(x)=f(g(x)) & (g \circ f)(x)=g(f(x)) \\
\left(f(g(x))=\left(\frac{1}{x-1}\right)^{2}-1\right. & \left(g(f(x))=\frac{1}{\left(x^{2}-1\right)-1}\right.
\end{array}
$$

Domain:
Domain:
$D:(-\infty, 1) \cup(1, \infty)$

$$
D:(-\infty,-\sqrt{2}) \cup(-\sqrt{2}, \sqrt{2}) \cup(\sqrt{2}, \infty)
$$

$$
f(x)=\sqrt{x+5} \quad g(x)=x^{2}-3
$$

Evaluate:

$$
f(g(2)+g(-1))=
$$

$$
f(g(h+1))=
$$

$$
f(x)=\sqrt{x+5} \quad g(x)=x^{2}-3
$$

Evaluate:

$$
\begin{aligned}
& f(g(2)+g(-1))=2 \\
& f(g(h+1))=\sqrt{h^{2}+2 h+3}
\end{aligned}
$$

Decompositions

We are now going to "undo" compositions by breaking a function back into its two pieces so that $\underline{h(x)}=\mathbf{f}(\mathbf{g}(\mathbf{x}))$.

$$
\text { 1. } h(x)=(x+1)^{2}-3(x+1)+4
$$

2. $h(x)=\sqrt{x^{3}+1}$

Decompositions

We are now going to "undo" compositions by breaking a function back into its two pieces so that $h(x)=f(g(x))$.

$$
\text { 1. } h(x)=(x+1)^{2}-3(x+1)+4 \quad \begin{array}{ll}
& f(x)=x^{2}-3 x+4 \\
& g(x)=x+1
\end{array}
$$

$$
\text { 2. } h(x)=\sqrt{x^{3}+1} \quad \begin{array}{ll}
& f(x)=\sqrt{x+1} \\
& g(x)=x^{3}
\end{array}
$$

Extra Practice - up next

Warm Up ~

- State the following and sketch a graph Domain:
- Range:
- x \& y intercepts:
- Max and Min:

$$
g(x)=\frac{\sqrt[3]{x}}{x^{2}-x}
$$

- Increasing:
- Decreasing:
- Limits at discontinuities:
- End Behavior using limits:

Warm Up ANSWERS ~

State the following and sketch a graph

- Domain: $\begin{aligned} & \left(\begin{array}{c}, 0)(0,1) \\ - \\ \text { - Range: }(1,) \\ - \\ \text { x \& y intercepts: NONE }\end{array}\right.\end{aligned} \quad g(x)=\frac{\sqrt[3]{x}}{x^{2}-x}$
- Max and Min: max of -3.07 at $x=.4$
- Increasing: (0,.4]
- Decreasing: $(-\infty, 0) \cup[.4,1) \cup(1, \infty)$
- Limits at discontinuities:
- End Behavior using limits:

$$
\begin{aligned}
& \lim _{x \rightarrow 0} f(x)=-\infty \\
& \lim _{x \rightarrow 1} f(x)=D N E \\
& \lim _{x \rightarrow \infty} f(x)=0 \\
& \lim _{x \rightarrow-\infty} f(x)=0
\end{aligned}
$$

