Unit 4 Day 8

Symmetry & Compositions

3. Write and graph an equation that has the following:

-Nonremovable discontinuity at 5

- -Removable discontinuity at -3
- -Horizontal asymptote of y=5/2

Warm Up Day 8 ANSWERS 2. $g(x) = 2x^2 - 4x$ **1.** $f(x) = 4x^3$ a. $-q(x) = -2x^2 + 4x$ a. f(-1) = -4b. $f(3x) = 108x^3$ b. q(x+y) = $2x^2 + 2y^2 + 4xy - 4x - 4y$ c. $f(-y) = -4y^3$ c. $q(-x) = 2x^2 + 4x$

3. Write and graph an equation that has the following: -Nonremovable discontinuity at 5 -Removable discontinuity at -3 -Horizontal asymptote of y=5/2 $f(x) = \frac{5(x+3)(x+1)}{2(x+3)(x-5)}$

Homework Questions?

Packet p. 6-7

Announcements ©

• Quiz Unit 4 #1 Corrections due Thurs 3/22

- If you complete those corrections & do better on Unit 4 Test, the Unit 4 Test grade can replace that quiz Grade
- Tutorials for credit due Friday 3/23!
 Tutorials are
 - Most mornings at 7 AM
 - Monday & Wednesday 1st half lunch
- Make-Up work due Monday 3/26!

• Reminder: Midterm is Tuesday 3/27

• Midterm Packet due!

Notes:

Symmetry, Even & Odd Functions, Function Composition

Symmetry:
About the y-axis
• Example:
$$f(x) = x^2$$

Graph:

 <u>A function is EVEN if it is symmetrical about</u> the y-axis.

• NON-Example: $f(x) = (x+5)^2$

Graph:

Symmetry with respect to the y-axisA.k.a. Reflection about y-axis

To prove a function is even algebraically, show that

$$f(-x) = f(x)$$

• Ex:
$$f(x) = x^n$$

where *n* is **even**

Determining Algebraically if a function is Even, Odd, or Neither

• Prove whether $f(x) = x^4$ is even, odd, or neither.

o We'll check if

$$f\left(-x\right)=f\left(x\right)$$

Determining Algebraically if a function is Even, Odd, or Neither

 Prove whether f(x) = x⁴ is even, odd, or neither.

 \circ We'll check if f(-

$$f\left(-x\right) = f\left(x\right)$$

$$f(-x) = (-x)^4 = x^4$$
$$f(-x) = f(x)$$
$$\therefore f(x) \text{ is even}$$

Symmetry— Checking in Table

- **Note:** You can often double-check if a function is even in the table x
- Example: $f(x) = x^2$

 BUT To prove <u>"Even"</u> functions you must show Algebraically

that

$$f\left(-x\right) = f\left(x\right)$$

X	f(x)
-3	9
-2	4
-1	1
1	1
2	4
3	9

Symmetry: x-axis

- A.k.a. Symmetric with respect to the x-axis.
- Graphs with this symmetry are not usually functions. They are mirrors.
- \circ (*x*,-*y*) mirrors (*x*,*y*)

X	f(x)
9	-3
4	-2
1	-1
1	1
4	2
9	3

Symmetry: About the origin

• Example:
$$f(x) = x^3$$

Graph:
• A function is **ODD** if it is
symmetrical about the origin.

• NON-Example: $f(x) = x^3 + 1$ Graph:

t

Symmetry about the Origin

A.k.a. Symmetric with respect to the *origin*. *Can be seen as* Rotation about origin 180°.

• To prove odd functions algebraically show that :

$$f\left(-x\right) = -f\left(x\right)$$

• Ex:
$$f(x) = x^n$$

where *n* is odd.

Determining Algebraically if a function is Even, Odd, or Neither

 Prove whether f(x) = x⁵ is even, odd, or neither.

 \circ 1st we'll check if

$$f\left(-x\right) = f\left(x\right)$$

$$\circ$$
 2nd we'll check if *f*

$$f(-x) = -f(x)$$

Determining Algebraically if a function is Even, Odd, or Neither

Prove whether f(x) = x⁵ is even, odd, or neither.

o 1st we'll check if f(-x) = f(x)

$$f(-x) = (-x)^5 = -x^5$$

$$f(-x) \neq f(x) \therefore f(x) \text{ is NOT even}$$

• 2nd we'll check if
$$f(-x) = -f(x)$$

 $-f(x) = -(x^5) = -x^5$
 $f(-x) = -f(x) \therefore f(x) \text{ is odd}$

Symmetry— Checking in Table

Note: You can often double-check if a function is odd in the table

• Example:
$$f(x) = x^3$$

 BUT To prove <u>"Odd"</u> functions you must show Algebraically

that

$$f\left(-x\right) = -f\left(x\right)$$

<i>x</i>	f(x)
-3	-27
-2	-8
-1	-1
1	1
2	8
3	27

Is the function symmetric? If so, determine the symmetry.

Is the function symmetric? **ANSWER** If so, determine the symmetry.

Symmetric about the y-axis

Is the function symmetric? If so, determine the symmetry.

$$g(x) = 3x - 2x^3$$

Graph

Algebraic

Is the function symmetric? **ANSWER** If so, determine the symmetry.

Symmetric about the origin

Is the function symmetric? If so, determine the symmetry.

$$h(x) = x^7 - 2$$

Graph

Algebraic

Is the function symmetric? **ANSWER** If so, determine the symmetry.

$$h(x) = x^7 - 2$$

Graph

Algebraic

 $h(-x) \neq -h(x)$ $h(-x) \neq h(x)$ $\therefore Neither$

You Is the function symmetric? Try! If so, determine the symmetry.

3

$$3. g(x) = \frac{x^3}{x^2 - 9}$$

$$4. f(x) = \frac{2x^3}{x-5}$$

$$5. f(x) = \frac{x}{x^3 - x}$$

You Is the function symmetric? Try! If so, determine the symmetry. ANSWER

2

5. f(x)

$$3. g(x) = \frac{x^3}{x^2 - 9}$$

$$g(-x) = -g(x)$$

$$\frac{1}{9} \qquad 4. \ f(x) = \frac{2x^3}{x-5}$$

$$f(-x) \neq -f(x)$$

$$f(-x) \neq f(x)$$

$$(x) = \frac{x}{x^3 - x}$$

$$f(-x) = f(x)$$

$$\therefore Even$$

Now let's combine functions

Recall function notation!

Let's step it up a notch!

• If f(x) = 3x, (Simplify when possible)

○ Find: f(4) - f(x)

 \circ Find: f(x+1) - x

• If f(x) = 3x, (Simplify when possible)

• Find: $f(4) - f(x) = \frac{12 - 3x}{12 - 3x}$

• Find: f(x+1) - x = 3x+3 - x = 2x + 3

• Find: $f(x+h) - f(x) = \frac{3x+3h - 3x}{2} = \frac{3h}{2}$

Combinations of Functions

When you add, subtract, multiply, or divide two functions.

- o Add:
- o Subtract:
- Multiply:
- Divide:

(f + g) (x) = f(x) + g(x)(f - g) (x) = f(x) - g(x) $(f \cdot g) (x) = f(x) \cdot g(x)$ (f/g) (x) = f(x) / g(x)

Examples:
$$f(x) = \frac{3}{x-2}$$

$$g(x) = \frac{3+x}{3}$$

Add and find the domain: (f + g)(x) = f(x) + g(x) Subtract and find the domain: (f - g) (x) = f(x) - g(x)

Multiply and find the domain: (f •g) (x) = f(x)•g(x)

Divide and find the domain: (f/g) (x) = f(x)/g(x)

Examples: $f(x) = \frac{3}{x-2}$

$$g(x) = \frac{3+x}{3}$$

Add and find the domain: (f + g)(x) = f(x) + g(x) $(f + g)(x) = \frac{3}{x-2} + \frac{3+x}{3}$ $D: (-\infty, 2) \cup (2, \infty)$

Multiply and find the domain:

$$(f \bullet g) (x) = f(x) \bullet g(x)$$
$$(f \bullet g)(x) = \left(\frac{3}{x-2}\right) \left(\frac{3+x}{3}\right)$$
$$D: (-\infty, 2) \cup (2, \infty)$$

Subtract and find the domain:

$$(f - g)(x) = f(x) - g(x)$$

$$(f - g)(x) = \frac{3}{x - 2} - \left(\frac{3 + x}{3}\right)$$

$$D: (-\infty, 2) \cup (2, \infty)$$

Divide and find the domain:

(f/g) (x) = f(x)/g(x) $(f/g)(x) = \frac{\left(\frac{3}{x-2}\right)}{\left(\frac{3+x}{3}\right)}$ D: (-\infty, -3) \cup (-3, 2) \cup (2, \infty) \left(\frac{3+x}{3}\right)

Examples: $f(x) = \sqrt{x+4}$

g(x) = |x+2|

Add and find the domain: (f + g)(x) = f(x) + g(x) Subtract and find the domain: (f - g) (x) = f(x) - g(x)

Examples: $f(x) = \sqrt{x+4}$

Add and find the domain: (f + g)(x) = f(x) + g(x) $(f + g)(x) = \sqrt{x + 4} + |x + 2|$ $D: [-4, \infty)$

$$g(x) = |x+2|$$

Subtract and find the domain: (f - g) (x) = f(x) - g(x)

$$(f-g)(x) = \sqrt{x+4} - |x+2|$$
$$D: [-4, \infty)$$

Examples: $f(x) = \sqrt{x+4}$

g(x) = |x+2|

Multiply and find the domain: Divide and find the domain: (f •g) (x) = f(x) • g(x) (f/g) (x) = f(x)/g(x)

Examples:
$$f(x) = \sqrt{x+4}$$

$$g(x) = |x+2|$$

Multiply and find the domain: (f •g) (x) = $f(x) \bullet g(x)$

Divide and find the domain: (f/g)(x) = f(x)/g(x)

$$(f \bullet g)(x) = \sqrt{x+4} \bullet |x+2|$$
$$D : [-4, \infty)$$

 $(f / g)(x) = \frac{\sqrt{x+4}}{|x+2|}$ $D: [-4, -2) \cup (-2, \infty)$

Compositions

Let *f* & *g* be two functions such that the domain of *f* intersects the range of *g*.

- $(f \circ g)(x) = f(g(x))$
- Domain of $(f \circ g)(x) =$
 - Intersection of the domain of g(x) with the domain of f(g(x)).

 $(g \circ f)(x) = g(f(x))$

Domain of $(g \circ f)(x) =$

 Intersection of the domain of f(x) with the domain of g(f(x)).

Compositions $f(x) = x^2$ g(x) = 4 - 3x(fog)(x) = f(g(x)) (gof)(x) = g(f(x))

Domain:

Domain:

Domain:

 $D:(-\infty,\infty)$

Domain:

 $D:(-\infty,\infty)$

Find the domain of g(f(x))?

$$f(x) = \sqrt{x+5}$$
 $g(x) = x^2 - 3$

What numbers can't you substitute in to g(f(x))? Does your domain agree?

Find the domain of g(f(x))?

$$f(x) = \sqrt{x+5} \qquad g(x) = x^2 - 3$$
$$g(f(x)) = (\sqrt{x+5})^2 - 3$$

 $D:[-5,\infty)$

Evaluate :
$$g(f(-9))$$

What numbers can't you substitute in to g(f(x))? Does your domain agree?

$$\begin{array}{l} \begin{array}{l} \text{Compositions} \\ f(x) = x^2 - 1 \end{array} \qquad g(x) = \frac{1}{x - 1} \\ (f \circ g)(x) = f\left(g(x)\right) \qquad (g \circ f)(x) = g\left(f(x)\right) \end{array}$$

Domain:

Domain:

$$\begin{array}{ll}
\textbf{Compositions} \\
f(x) = x^2 - 1 & g(x) = \frac{1}{x - 1} \\
(f \circ g)(x) = f(g(x)) & (g \circ f)(x) = g(f(x)) \\
(f(g(x)) = \left(\frac{1}{x - 1}\right)^2 - 1 & (g(f(x)) = \frac{1}{(x^2 - 1) - 1}
\end{array}$$

Domain: $D: (-\infty, 1) \cup (1, \infty)$

Domain: $D: (-\infty, -\sqrt{2}) \cup (-\sqrt{2}, \sqrt{2}) \cup (\sqrt{2}, \infty)$

 $f(x) = \sqrt{x+5}$ $g(x) = x^2 - 3$

Evaluate:

f(g(2) + g(-1)) =

f(g(h+1)) =

 $f(x) = \sqrt{x+5}$ $g(x) = x^2 - 3$

Evaluate:

f(g(2) + g(-1)) = 2

 $f(g(h+1)) = \sqrt{h^2 + 2h + 3}$

Decompositions

We are now going to "undo" compositions by breaking a function back into its two pieces so that h(x)=f(g(x)).

1.
$$h(x) = (x+1)^2 - 3(x+1) + 4$$

2.
$$h(x) = \sqrt{x^3 + 1}$$

Decompositions

We are now going to "undo" compositions by breaking a function back into its two pieces so that h(x)=f(g(x)).

1.
$$h(x) = (x+1)^2 - 3(x+1) + 4$$

 $f(x) = x^2 - 3x + 4$
 $g(x) = x + 1$

0

2.
$$h(x) = \sqrt{x^3 + 1}$$
 $f(x) = \sqrt{x + 1}$
 $g(x) = x^3$

Extra Practice – up next

Warm Up ~

- State the following and sketch a graph
- Domain:
- Range:
- x & y intercepts:
- Max and Min:
- Increasing:
- Decreasing:
- Limits at discontinuities:
- End Behavior using limits:

 $g(x) = \frac{\sqrt[3]{x}}{x^2 - x}$

Warm Up ANSWERS ~

- State the following and sketch a graph
- Domain: (-4,0) E(0,1) E(1,4)
- Range: (-4,0) E(0,4)
- x & y intercepts: NONE
- Max and Min: max of 3.07 at x = .4
- Increasing: (0,.4]
- Decreasing: $(-\infty, 0) \cup [.4, 1) \cup (1, \infty)$ $\lim f(x) = -\infty$
- Limits at discontinuities:
- End Behavior using limits:

$$g(x) = \frac{\sqrt[3]{x}}{x^2 - x}$$

$$\lim_{x \to 0} f(x) = DM$$

$$\lim_{x \to 1} f(x) = DNE$$
$$\lim_{x \to \infty} f(x) = 0$$

$$\lim_{x\to\infty}f(x)=0$$