UNIT $5 \sim DAY 8$

Applications

WARM UP

Find the derivative of each function.

1.
$$f(x) = \sqrt[3]{(3x^2 + 4x)^5}$$

$$2.\,g(x) = x^4\sqrt{2x-3}$$

WARM UP ANSWERS $f'(x) = \frac{5}{3}(3x^2 + 4x)^{\frac{2}{3}}(6x + 4)$ Find the derivative. 1. $f(x) = \sqrt[3]{(3x^2 + 4x)^5}$ $=(10x+\frac{20}{3})(3x^2+4x)^{\frac{2}{3}}$ $=(10x+\frac{20}{3})\sqrt[3]{(3x^2+4x)^2}$ $2.\,g(x) = x^4\sqrt{2x-3}$ $g'(x) = (4x^3)(2x-3)^{\frac{1}{2}} + x^4(\frac{1}{2}(2x-3)^{-\frac{1}{2}} \cdot 2)$ $= (4x^{3})(2x-3)^{\frac{1}{2}} + x^{4}(2x-3)^{-\frac{1}{2}}$ $=4x^{3}\sqrt{2x-3} + \frac{x^{4}}{\sqrt{2x-3}}$

HW QUESTIONS?

TONIGHT'S HW

PACKET P. 10 OMIT #1 AND #9

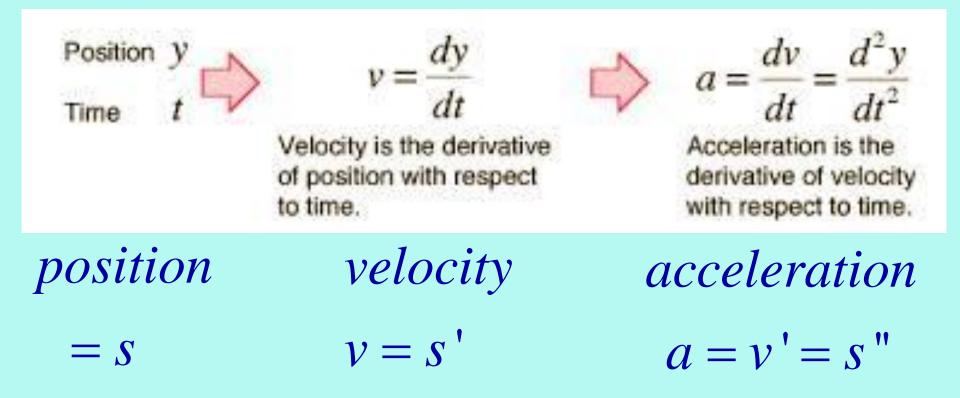
#3, 7, AND 11 HAVE <u>NEGATIVE</u> VELOCITY

<u>Additional Hint</u>: If an object is **DROPPED**, then the initial velocity is 0 (#5 and #10)

NOTES: APPLICATIONS OF DERIVATIVES

Definitions

Velocity: the rate of motion in a specific **direction** (also known as **Speed**)


Acceleration: the rate at which velocity (speed) is changing.

 \rightarrow If an object is moving with a constant velocity, then its acceleration is zero, since the velocity never changes.

RECALL

Position vs Time graph (original function)
Velocity vs Time graph (first derivative)

Acceleration vs Time graph (second derivative)

Motion relationships in one dimension.

position

APPLICATIONS

Maximums and Minimums – find in calculator

Instantaneous Velocity – Use the velocity function (first derivative) of the position equation and find the value at the specific x.

Acceleration – Use the second derivative of the position ... the derivative of the velocity function.

*Read the problems carefully! Highlight what they're asking for AND what they're giving you!

FORMULA...

The position of a free falling object (neglecting air resistance) under the influence of gravity can be given by the equation:

$$\int s(t) = \frac{1}{2}gt^2 + v_0t + s_0$$

 $s_0 = initial height$

- v_0 = initial velocity (or speed for our purposes)
- g = acceleration due to gravity (-32 ft/sec² or -9.8 m/sec²)

✤If a billiard ball is dropped from a height of 100ft, its height s at time t is given by the position function $s = -16t^2 + 100$, where s is measured in feet and t is measured in seconds.

Find the velocity at t = 1 and t = 2.

EXAMPLE 1 ANSWERS

✤If a billiard ball is dropped from a height of 100ft, its height s at time t is given by the position function $s = -16t^2 + 100$, where s is measured in feet and t is measured in seconds.

Find the velocity at t = 1 and t = 2.

$$s'(t) = -32t$$

s'(1) = -32 ft / secs'(2) = -32(2) = -64 ft / sec

✤At time t = 0, a diver jumps down from a platform diving board that is 50 feet above the water. The position of the diver is given by

 $s(t) = -16t^2 + 18t + 50$, where s is the measured in feet

and t is measured in seconds.

a. When does the diver hit the water?

b. What is the velocity at impact?

EXAMPLE 2 ANSWERS

At time t = 0, a diver jumps down from a platform

diving board that is 50 feet above the water. The

position of the diver is given by

 $s(t) = -16t^2 + 18t + 50$, where s is the measured in feet

and t is measured in seconds.

a. When does the diver hit the water?

b. What is the velocity at impact? s'(2.418) = -32(2.418) + 18= -59.36 ft / sec

After 2.418 seconds

- An arrow is shot straight up in the air with a speed of 900m/s.
- The arrow is launched with an initial height of 2.4m.

$$s(t) = \frac{1}{2}gt^2 + v_0t + s_0$$

a. What is the equation relating its height as a function of time?

b. Find the instantaneous velocity at t = 1.5s

EXAMPLE 3 ANSWERS

An arrow is shot straight up in the air with a speed of 900m/s. The arrow is launched with an initial height of 2.4m.

$$s(t) = \frac{1}{2}gt^2 + v_0t + s_0$$

a. What is the equation relating its height as a function of time?

$$h(t) = -4.9t^2 + 900t + 2.4$$

b. Find the instantaneous velocity at t = 1.5s

h'(t) = -9.8t + 900h'(1.5) = -9.8(1.5) + 900= 885.3 m / sec

The position of a particle is given by the equation $s(t) = \frac{2}{3}t^3 - 12t^2 + 54t - 8$, where **t** is measured in seconds and **s** in meters.

- a. What is the particle's velocity function?
- b. What is the particle's acceleration function?

3. When is the particle <u>at rest (velocity=0)? write down!</u>

EXAMPLE 4 ANSWERS

- The position of a particle is given by the equation $s(t) = \frac{2}{3}t^3 - 12t^2 + 54t - 8$, where **t** is measured in seconds and **s** in meters.
- a. What is the particle's velocity function? $s'(t) = 2t^2 - 24t + 54$
- b. What is the particle's acceleration function? s''(t) = 4t - 24
- c. When is the particle <u>at rest (velocity=0)?</u> \leftarrow write down! $0 = 2t^2 - 24t + 54$, so t = 3 and 9 sec

HW if you do not finish! GET IN GROUPS TO WORK ON THE APPLICATION QUESTIONS PACKET P. 10

OMIT #1 AND #9

#3, 7, AND 11 HAVE <u>NEGATIVE</u> VELOCITY

<u>Additional Hint</u>: If an object is **DROPPED**, then the initial velocity is 0 (#5 and #10)