Unit 4 Day 7 Quiz Day #2

Warm-Up Quiz #2 Day!

Use g(x) for questions 1 – 6 and round to 3 decimal places. $g(x) = \frac{x^2 - 36}{x - 7}$ (Hint: You may need to Zoom Out!)

- 1. Maximum:
- 3. Increasing:

- 2. Minimum:
- 4. Decreasing:
- 5. Domain: 6. Range:

Express the end behavior with correct limit notation.7. g(x) seen above

8.
$$f(x) = \frac{4x^2 - 49}{2x + 1 + 7x^2}$$
 9. $h(x) = \frac{49 - 4x}{2x + 1 + 7x^2}$

Warm-Up Quiz #2 Day! ANSWERS

Use g(x) for questions 1 – 6 and round to 3 decimal places. $g(x) = \frac{x^2 - 36}{x - 7}$ (Hint: You may need to Zoom Out!)

- 1. Maximum:
 - 6.789 occurs at x = 3.394
- 3. Increasing: $(-\infty, 3.394] \cup [10.606, \infty)$
 - 5. Domain:

 $(-\infty, 7) \cup (7, \infty)$

- 2. Minimum:
 - 21.211 occurs at x = 10.606
- 4. Decreasing: [3.394, 7) ∪ (7, 10.606]

6. Range: (-∞, 6.789]∪[21.211, ∞)

Warm Up Continued \rightarrow

Warm-Up Quiz #2 Day! ANSWERS

Express the end behavior.
7. g(x) seen above
$$g(x) = \frac{x^2 - 36}{x - 7}$$

Top degree is bigger \rightarrow No HA \rightarrow look at ends on graph

$$\lim_{x\to\infty}g(x)=-\infty$$

8.
$$f(x) = \frac{4x^2 - 49}{2x + 1 + 7x^2}$$

Same degree \rightarrow HA is y = ratio of leading coeff.

$$\lim_{x \to -\infty} f(x) = \frac{4}{7}$$
$$\lim_{x \to \infty} f(x) = \frac{4}{7}$$

 $\lim_{x\to\infty}g(x)=\infty$

9.
$$h(x) = \frac{49 - 4x}{2x + 1 + 7x^2}$$

Bottom degree is bigger \rightarrow HA is y = 0 $\lim_{x \to -\infty} h(x) = 0$ $\lim_{x \to \infty} h(x) = 0$

Homework Questions?

Tonight's Homework

- Update your outline!
- Packet p. 6-7

Practice Quiz #2 Day

Using the graph of f(x) below, find the following limits.

 $\lim f(x)$ $x \rightarrow -5$ $\lim f(x)$ $x \rightarrow -3$ $\lim f(x)$ $x \rightarrow -\infty$ $\lim f(x)$ $x \rightarrow 0^{-}$ $\lim f(x)$ $x \rightarrow \infty$ $\lim f(x)$ $x \rightarrow 0$ f(-5)

Practice Quiz #2 Day ANSWERS

Using the graph of f(x) below, find the following limits.

More Practice for Quiz #2

Write an equation for the graphed rational function.

More Practice for Quiz #2: ANSWERS

Write an equation for the graphed rational function.

Rational Functions Handout

Quiz Time!

 After you finish the quiz, complete the Rational Functions Handout

Rational Functions Handout

Use g(x) for questions a - d and round to 3 decimal places.

$$g(x) = \frac{2x^2 - 8}{x - 3}$$

a. Maximum: c. Increasing: 3.056 occurs at x = .764 $(-\infty, 0.764] \cup [5.236, \infty)$

b. Minimum:20.944 occurs at x = 5.236

d. Decreasing: $[0.764, 3) \cup (3, 5.236]$

	$f(x) = \frac{2x-1}{x-7}$	$g(x) = \frac{x^2 + 5x}{x^2 + 7x + 10}$	$h(x) = \frac{x^2 - 7x + 12}{x^2 - 9}$	$f(x) = \frac{2x^2 + 5x - 3}{x + 3}$
Vertical Asymptote(s) Analyze Denominator	<i>x</i> = 7	x = -2	x = -3	none
Horizontal Asymptote(s) Analyze Degrees of Polynomial	<i>y</i> = 2	y = 1	y = 1	none
HOLES or Removable Point(s) of Discontinuity Simplify rational by factoring	none	$(-5, \frac{5}{3})$	$(3, -\frac{1}{6})$	(-3,-7)

$$f(x) = \frac{2x-1}{x-7}$$
 $g(x) = \frac{x^2+5x}{x^2+7x+10}$ $h(x) = \frac{x^2-7x+12}{x^2-9}$ $f(x) = \frac{2x^2+5x-3}{x+3}$ x-intercepts
set $y = 0$ $(\frac{1}{2}, 0)$ $(0, 0)$ $(4, 0)$ $(\frac{1}{2}, 0)$ y-intercepts
set $x = 0$ $(0, \frac{1}{7})$ $(0, 0)$ $(0, -\frac{4}{3})$ $(0, -1)$ Domain
(consider vertical
asymptotes and
x-value of hole) $(-\infty, 7) \cup (7, \infty)$ $(-\infty, -2) \cup (-2, -5)$
 $\cup (-5, \infty)$ $(-\infty, -3) \cup (-3, 3)$
 $\cup (3, \infty)$ $(-\infty, -3) \cup (-3, \infty)$ Range
(consider
horizontal
asymptote and
y-value of hole) $(-\infty, 2) \cup (2, \infty)$ $(-\infty, 1) \cup (1, \frac{5}{3})$
 $\cup (\frac{5}{3}, \infty)$ $(-\infty, -\frac{1}{6}) \cup (-\frac{1}{6}, 1)$
 $\cup (1, \infty)$ $(-\infty, -7) \cup (-7, \infty)$

	$f(x) = \frac{2x-1}{x-7}$	$g(x) = \frac{x^2 + 5x}{x^2 + 7x + 10}$	$h(x) = \frac{x^2 - 7x + 12}{x^2 - 9}$	$f(x) = \frac{2x^2 + 5x - 3}{x + 3}$
Find the following limits	$\lim_{x\to 7^-} f(x)$	$\lim_{x\to -5} g(x)$	Increasing:	$\lim_{x\to\infty}f(x)$
for the functions above.	$-\infty$	$\frac{5}{3}$	$(-\infty, -3) \cup (-3, 3)$ $\cup (3, \infty)$	$-\infty$
	Decreasing:	$\lim_{x\to -2^+} g(x)$	$\lim_{x\to 3} h(x)$	$\lim_{x\to -3} f(x)$
	$(-\infty,7)\cup(7,\infty)$		$-\frac{1}{6}$	-7