Unit 4 Day 7
 Quiz Day \#2

Warm-Up Quiz \#2 Day!

Use $g(x)$ for questions $1-6$ and round to 3 decimal places.

$$
g(x)=\frac{x^{2}-36}{x-7}
$$

(Hint: You may need to Zoom Out!)

1. Maximum:
2. Increasing:
3. Domain:
4. Minimum:
5. Decreasing:
6. Range:

Express the end behavior with correct limit notation.
7. $g(x)$ seen above
8. $f(x)=\frac{4 x^{2}-49}{2 x+1+7 x^{2}}$

$$
\text { 9. } h(x)=\frac{49-4 x}{2 x+1+7 x^{2}}
$$

Warm-Up Quiz \#2 Day! ANSWERS

Use $g(x)$ for questions $1-6$ and round to 3 decimal places.

$$
g(x)=\frac{x^{2}-36}{x-7}
$$

(Hint: You may need to Zoom Out!)

1. Maximum:
6.789 occurs at $x=3.394$
2. Increasing:
$(-\infty, 3.394] \cup[10.606, \infty)$
3. Domain:

$$
(-\infty, 7) \cup(7, \infty)
$$

2. Minimum:
21.211 occurs at $x=10.606$
3. Decreasing:
$[3.394,7) \cup(7,10.606]$
4. Range:
$(-\infty, 6.789] \cup[21.211, \infty)$

Warm-Up Quiz \#2 Day! ANSWERS

Express the end behavior.
7. $\mathrm{g}(\mathrm{x})$ seen above $\quad g(x)=\frac{x^{2}-36}{x-7}$

Top degree is bigger \rightarrow No HA \rightarrow look at ends on graph
$\lim _{x \rightarrow-\infty} g(x)=-\infty$
8. $f(x)=\frac{4 x^{2}-49}{2 x+1+7 x^{2}}$

Same degree \rightarrow HA is $y=$ ratio of leading coeff.
$\lim _{x \rightarrow-\infty} f(x)=4 / 7$
$\lim _{x \rightarrow \infty} f(x)=4 / 7$

$$
\lim _{x \rightarrow \infty} g(x)=\infty
$$

9. $h(x)=\frac{49-4 x}{2 x+1+7 x^{2}}$

Bottom degree is bigger
$\rightarrow \mathrm{HA}$ is $\mathrm{y}=0$
$\lim _{x \rightarrow-\infty} h(x)=0$
$\lim _{x \rightarrow \infty} h(x)=0$

Homework Questions?

Tonight's Homework

Update your outline!

- Packet p. 6-7

Practice Quiz \#2 Day

Using the graph of $f(x)$ below, find the following limits.
$\lim f(x)$
$x \rightarrow-5$
$\lim f(x)$ $x \rightarrow-3$
$\lim f(x)$
$x \rightarrow-\infty$
$\lim f(x)$
$x \rightarrow 0^{-}$
$\lim f(x)$
$x \rightarrow \infty$
$\lim f(x)$
$x \rightarrow 0$
$f(-5)$

Practice Quiz \#2 Day ANSWERS

Using the graph of $f(x)$ below, find the following limits.
$\lim _{x \rightarrow-5} f(x)=1$
$x \rightarrow-5$
$\lim f(x)=3$
$x \rightarrow-3$
$\lim f(x)=\infty$ $x \rightarrow-\infty$
$\lim f(x)=5$ $x \rightarrow 0^{-}$
$\lim f(x)=0$ $x \rightarrow \infty$
$\lim f(x) D N E$
$x \rightarrow 0$
$f(-5)=-1$

More Practice for Quiz \#2

Write an equation for the graphed rational function. a.

Hole (3, 5)
b.

Hole ($-5,-1 / 2$)

More Practice for Quiz \#2: ANSWERS

Write an equation for the graphed rational function.

Hole $(3,5)$

$$
y=\frac{(x-3)(x+2)}{(x-3)}
$$

8.

Hole (-5, -1/2)

$$
y=\frac{(x+5)}{(x+5)(x+3)}
$$

Rational Functions Handout

Quiz Time!

- After you finish the quiz, complete the Rational Functions Handout

Rational Functions Handout

Use $\mathrm{g}(\mathrm{x})$ for questions a - d and round to 3 decimal places.

$$
g(x)=\frac{2 x^{2}-8}{x-3}
$$

a. Maximum:
c. Increasing:
$(-\infty, 0.764] \cup[5.236, \infty)$
b. Minimum:
20.944 occurs at $\mathrm{x}=5.236$
d. Decreasing:
$[0.764,3) \cup(3,5.236]$
$\left.\begin{array}{|c|c|c|c|c|}\hline & f(x)=\frac{2 x-1}{x-7} & g(x)=\frac{x^{2}+5 x}{x^{2}+7 x+10} & h(x)=\frac{x^{2}-7 x+12}{x^{2}-9} & f(x)=\frac{2 x^{2}+5 x-3}{x+3} \\ \hline \begin{array}{c}\text { Vertical } \\ \text { Asymptote } s) \\ \text { Analye }\end{array} & x=7 & x=-2 & x=-3 & \text { none } \\ \text { Denominator }\end{array}\right\}$

	$f(x)=\frac{2 x-1}{x-7}$	$g(x)=\frac{x^{2}+5 x}{x^{2}+7 x+10}$	$h(x)=\frac{x^{2}-7 x+12}{x^{2}-9}$	$f(x)=\frac{2 x^{2}+5 x-3}{x+3}$
x-intercepts set $\mathrm{y}=0$	$\left(\frac{1}{2}, 0\right)$	$(0,0)$	$(4,0)$	$\left(\frac{1}{2}, 0\right)$
y-intercepts set $\mathbf{x}=0$	$\left(0, \frac{1}{7}\right)$	$(0,0)$	$\left(0,-\frac{4}{3}\right)$	$(0,-1)$
Domain (consider vertical asymptotes and x-value of hole)	$(-\infty, 7) \cup(7, \infty)$	$\left\lvert\, \begin{gathered} (-\infty,-2) \cup(-2,-5) \\ \cup(-5, \infty) \end{gathered}\right.$	$\begin{gathered} (-\infty,-3) \cup(-3,3) \\ \cup(3, \infty) \end{gathered}$	$(-\infty,-3) \cup(-3, \infty)$
Range (consider horizontal asymptote and y-value of hole)	$(-\infty, 2) \cup(2, \infty)$	$\begin{gathered} (-\infty, 1) \cup\left(1, \frac{5}{3}\right) \\ \cup\left(\frac{5}{3}, \infty\right) \end{gathered}$	$\begin{gathered} \left(-\infty,-\frac{1}{6}\right) \cup\left(-\frac{1}{6}, 1\right) \\ \cup(1, \infty) \end{gathered}$	$(-\infty,-7) \cup(-7, \infty)$

	$f(x)=\frac{2 x-1}{x-7}$	$g(x)=\frac{x^{2}+5 x}{x^{2}+7 x+10}$	$h(x)=\frac{x^{2}-7 x+12}{x^{2}-9}$	$f(x)=\frac{2 x^{2}+5 x-3}{x+3}$
Find the following limits for the functions above.	$\begin{gathered} \lim _{x \rightarrow 7^{-}} f(x) \\ -\infty \end{gathered}$	$\begin{gathered} \lim _{x \rightarrow-5} g(x) \\ \frac{5}{3} \end{gathered}$	Increasing: $\begin{gathered} (-\infty,-3) \cup(-3,3) \\ \cup(3, \infty) \end{gathered}$	$\begin{gathered} \lim _{x \rightarrow-\infty} f(x) \\ -\infty \end{gathered}$
	$\begin{aligned} & \text { Decreasing: } \\ & (-\infty, 7) \cup(7, \infty) \end{aligned}$	$\begin{gathered} \lim _{x \rightarrow-2^{+}} g(x) \\ -\infty \end{gathered}$	$\begin{gathered} \lim _{x \rightarrow 3} h(x) \\ -\frac{1}{6} \end{gathered}$	$\begin{gathered} \lim _{x \rightarrow-3} f(x) \\ -7 \end{gathered}$

