DAY 7

LIMITS PART 2 - WHAT ABOUT LIMITS

 IN THE MIDDLE OF THE FUNCTION?
WARM-UP DAY1

TIP: You may want to print "Day 7 Graphs for Notes" - in Power Point area of website - to help with notetaking :)

Find the requested information.
Increasing: Decreasing:

Domain:
Range:

Express End Behaviors using proper Limit Notation
-2) $f(x)=x^{3}-2 x^{2}-3 x$ Increasing

Decreasing:
Domain: Range:
Express End Behaviors using proper Limit Notation

TIP: You may want to print "Day 7 Graphs for Notes" - in Power Point area of website - to help with notetaking :)

Find the requested information.
HINT: find extrema $\mathbf{1}^{\text {st }}$

NORMAL FLOAT AUTO $a+b i$ RfDIfN MP

$$
Y_{1}=X^{\wedge} 4 /\left(X^{\wedge} 4-1\right)
$$

Increasing:

Decreasing:

Domain:

Range:

Express End Behaviors using proper Limit Notation

WARM-UP DAY 7

Find the requested information.
HINT: find extrema $\mathbf{1}^{\text {st }}$
-2)
$f(x)=x^{3}-2 x^{2}-3 x$
Local Max 0.88 occurs at $\mathrm{x}=-0.54$
Local Min -6.06 occurs at $\mathrm{x}=1.87$
NORMAL FLOAT RUTO $\mathrm{a}+\mathrm{bi}$ RADIAN MP
CALC MAXIMUM

Increasing:

Decreasing:

Domain:

Express End Behaviors usir hormal float futo a+bi radian mp proper Limit Notation

WARM-UP DAY 1 ANSWERS

Find the requested information.
-1)

$$
g(x)=\frac{x^{4}}{x^{4}-1}
$$

Increasing: $(-\infty,-1) \cup(-1,0)$
Decreasing: $(0,1) \cup(1, \infty)$
Local Max 0 occurs at $\mathrm{x}=0$
NORMAL FLOAT GUTO $a+b i$ RADIAN MP
$Y_{1}=X^{\wedge} 4 /\left(X^{\wedge} 4-1\right)$

$x=0$

WARM-UP DAY1 ANSWERS

Find the requested information
-2)
$f(x)=x^{3}-x^{2}-2 x$
Local Max 0.88 occurs at $\mathrm{x}=-0.54$
Local Min -6.06 occurs at $x=1.87$
NORMAL FLOAT AUTO $a+b i$ RadIfiN MP CALC MAXIMUM

$$
Y_{1}=X^{3}-2 X^{2}-3 X
$$

Maximum
$X=-.5351822$

Increasing: $(-\infty,-0.54) \cup(1.87, \infty)$
Decreasing: $(-0.54,1.87)$
Domain: $\quad(-\infty, \infty)$
Range: $\quad(-\infty, \infty)$
End Behavior using Proper Limit Notation:

$$
\lim _{x \rightarrow \infty} f(x)=\infty
$$

$$
\lim _{x \rightarrow-\infty} f(x)=-\infty
$$

HW DAY 7:

PACKET P. 9 AND HANDOUT INTRO TO LIMITS (ON WEBSITE)

NOTES DAY 7 :

LIMITS PART 2

LIMITS TO CERTAIN VALUES \& LIMITS AT LEFT-HAND AND RIGHT-HAND SIDES

USE "Day 7 Graphs for Notes" handout in Power Point area of Wehsite for help taking notes today ©

REMEMBER THE DEFINITION OF A LIMIT

-If $f(x)$ becomes arbitrarily close to a unique number L as x approaches c from either side, the limit of $f(x)$ as x approaches c is L.

- L is a y-value! c is an x-value!

$$
\lim _{x \rightarrow c} f(x)=L
$$

TAKE A LOOK AT THIS GRAPH....

- Remember, a limit is asking what y-value the function is approaching as \times gets close to some value.
- Using the definition of a limit, I could say:

$\lim _{x \rightarrow 0} f(x)=$
$\lim _{x \rightarrow 4} f(x)=$
$\lim _{x \rightarrow-4} f(x)=$

NOTICE:

The function itself DOES NOT exist at $x=0$, but the limit does!

TAKE A LOOK AT THIS GRAPH.... ANSWERS

-Remember, a limit is asking what y-value the function is approaching as \times gets close to some value.

- Using the definition of a limit, I could say:
$\lim _{x \rightarrow 0} f(x)=1$
$\lim _{x \rightarrow 4} f(x)=0$ $x \rightarrow 4$
$\lim _{x \rightarrow-4} f(x)=0$

NOTICE:

The function itself DOES NOT exist at $x=0$, but the limit does!

S0000....

The existence/non-existence of $f(x)$ at $x=c$ has NO BEARING on the existence of the limit of $f(x)$ as x approaches c.

EXAMPLE...

$\lim _{x \rightarrow-3} f(x)=$

$f(-3)=$

$\lim _{x \rightarrow 3} f(x)=$
$f(3)=$

EXAMPLE... ANSWERS

$$
\begin{aligned}
& \lim _{x \rightarrow-3} f(x)=3 \\
& f(-3)=1
\end{aligned}
$$

$\lim _{x \rightarrow 3} f(x)=-2$

$$
f(3)=\text { I }
$$

LIMITS AT "HOLE"

- Ex: Graph it, find the domain, and find value of the limit requested.
$f(x)=\frac{(x+2)^{2}}{x+2}$

Domain:
$\lim f(x)=$
$x \rightarrow-2$
*The limit at a hole will always
be the y-value of the hole!!

LIMITS AT "HOLE" ANSWERS

Ex: Graph it and write the domain.

$$
f(x)=\frac{(x+2)^{2}}{x+2}
$$

Domain: $(-\infty,-2) \cup(-2, \infty)$

$$
\lim _{x \rightarrow-2} f(x)=0
$$

*The limit at a hole will always be the y-value of the hole!!

\square Write this down!

WHAT ABOUT THIS...

$\lim f(x)=$?
 $X \rightarrow 0$

Even though the two curves are on different sides of $x=0$, since both curves approach the same y-value, as \times approaches 0 , we have a limit. ©

WHAT ABOUT THIS.... ANSWERS

$\lim f(x)=? \infty$ $x \rightarrow 0$

Even though the two

curves are on different sides of $x=0$, since both curves approach the same y-value, as x approaches 0 , we have a limit. ©

LIMIT AT VERTICAL ASYMPTOTE

- Using this example, find the domain and graph it. D:
- "Describe" the behavior of the y-values as the
 x-values approach the vertical asymptote.

From the left:
From the right:

- Is there a simpler way to write this? Yes...

$$
x-2
$$

LIMIT AT VERTICAL ASYMPTOTE ANSWERS

- Using this example, find

$$
f(x)=\frac{x+3}{x-2}
$$ the domain and graph it.

$$
D:(-\infty, 2) \cup(2, \infty)
$$

- "Describe" the behavior of the y-values as the x-values approach the vertical asymptote.

From the left: $-\infty$
From the right: ∞
Is there a simpler way to write this? Yes...

ONE-SIDED LIMITS

-Let $f(x)$ be defined on an interval (a, b), where $a<b$. If $f(x)$ approaches arbitrarily close to L as x approaches a from within that interval, then we say that f has a right-hand limit L at a, and we write:

$$
\lim _{x \rightarrow a^{+}} f(x)=L
$$

- Let $f(x)$ be defined on an interval (c, a) where $c<a$. If $f(x)$ approaches arbitrarily close to M as x approaches a from within the interval, then we say that f has a left-hand limit \mathbf{M} at a, and we write:

$$
\lim _{x \rightarrow a^{-}} f(x)=M
$$

LIMIT NOTATION TO REPRESENT THIS DESCRIPTION.

Limit of $f(x)$ as x
approaches 2 from the left (negative side):

$\lim f(x)=$?
 $x \rightarrow 2^{-}$

LIMIT NOTATION TO REPRESENT THIS DESCRIPTION. ANSWER

Limit of $f(x)$ as x
approaches 2 from the left (negative side):

$$
\begin{aligned}
& \lim _{\boldsymbol{x} \rightarrow 2^{-}} \boldsymbol{f}(\boldsymbol{x})=? \\
& \lim _{x \rightarrow 2^{-}} f(x)=-\infty
\end{aligned}
$$

LIMIT NOTATION:

Limit of $f(x)$ as x approaches 2 from the right (positive side):

$\lim f(x)=$?
 $x \rightarrow 2^{+}$

LIMIT NOTATION:

ANSWER
Limit of $f(x)$ as x approaches 2 from the right (positive side):
$\lim _{x \rightarrow 2^{+}} f(x)=$?
$x \rightarrow 2^{+}$
$\lim _{x 2^{+}} f(x)=\infty$ $x \rightarrow 2^{+}$

SO THE RESULT????

Limit of $f(x)$ as x approaches 2:
$\lim _{x \rightarrow 2} f(x)=$?
$x \rightarrow 2$

SO THE RESULT???

ANSWER

Limit of $f(x)$ as x approaches 2:
$\lim f(x)=$?
$x \rightarrow 2$
DOES NOT EXIST!
(a.k.a. "DNE")

Because the graph approaches different y-values depending on the
 direction you're approaching $x=2$

SO, A LIMIT DOES NOT EXIST (DNE IF:

- $f(x)$ approaches a different value from the right side than from the left.
- $f(x)$ oscillates between two fixed values as x approaches c.
-Ex: Graph $y=\sin (x)$. Find limit as x approaches infinity.

DOES NOT EXIST!

WHAT ARE YOUR THOUCHTS ON THIS?

WHAT ARE YOUR THOUGHTS ON THIS? ANSWER

WHAT ABOUT THIS??

$\lim _{x \rightarrow 0} f(x)=$
$\lim _{x \rightarrow 2} f(x)=$ $x \rightarrow 2$

No issues!
$\lim _{x \rightarrow 1} f(x)=$ $\lim _{x \rightarrow-2} f(x)=$ $\lim _{x \rightarrow-5} f(x)=$ WHAT ABOUT THIS??立
$\lim _{x \rightarrow 1} f(x)=$
$\varlimsup_{x \rightarrow-2} f(x)=$
$\lim _{x \rightarrow-5} f(x)=$

WHAT ABOUT THIS??
 ANSWERS

$\lim _{x \rightarrow 1} f(x)=$ DNE
$\lim _{x \rightarrow-2} f(x)=$ DNE
$\lim _{x \rightarrow-5} f(x)=0$

$\lim _{x \rightarrow 0} f(x)=-1$
$\lim _{x \rightarrow 2} f(x)=0$
No issues!

YOU TRY! EVALUATE.

$\lim _{x \rightarrow-2^{-}} f(x)=$
$\lim _{x \rightarrow 2^{+}} f(x)=$
$\lim f(x)=$
$x \rightarrow I^{-}$
$\lim _{x \rightarrow 1^{+}} f(x)=$

YOU TRY! EVALUATE.

ANSWERS

$\lim f(x)=0$ $x \rightarrow-2^{-}$

$$
\lim _{x \rightarrow-2^{+}} f(x)=-1
$$

$$
\lim _{x^{-}} f(x)=-1
$$

$$
x \rightarrow 1^{-}
$$

$\lim _{x \rightarrow 1^{+}} f(x)=\mathbf{2}$

$\lim _{x \rightarrow-2 \pi} f(x)=$
$\lim _{x \rightarrow-2^{+}} f(x)=$
$\lim _{x \rightarrow 1^{-}} f(x)=$
$\lim _{x \rightarrow+^{+}} f(x)=$

RETEN

$\lim _{x \rightarrow-4} f(x)=$
$\lim _{x \rightarrow-4^{-}} f(x)=$
$\lim _{x \rightarrow-1} f(x)=$
$\lim _{x \rightarrow 4} f(x)=$
$f(4)=$
$f(2)=$

RETE
 ANSWERS

$\lim _{x \rightarrow-4} f(x)=$ DNE $\lim _{x \rightarrow-4^{-}} f(x)=3$
$\lim _{x \rightarrow-1} f(x)=4$ $\lim _{x \rightarrow 4} f(x)=2$
$f(4)=$ DNE $f(2)=-$ I

CONTINUOUS DEFIITIION AGAIN...

- Function f is continuous at a point \boldsymbol{a} if the following conditions are satisfied.
$f(a)$ is defined
$\lim _{x \rightarrow a} f(x)$ exists

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

PRACTICE

R:
Removable Disc:
NonRemovable Disc:
Horizontal Asymptote:
Increasing:
Decreasing:
End Behavior, written as limits
The following limits

$$
\lim _{x \rightarrow-6} g(x)=\quad \lim _{x \rightarrow 4} g(x)=\quad \lim _{x \rightarrow 4^{-}} g(x)=\lim _{x \rightarrow 4^{+}} g(x)=
$$

PRACTICE ANSWERS

- Find the values requested for

D: $(-\infty,-6) \cup(-6,4) \cup(4, \infty)$
R: $(-\infty, 2) \cup(2,3) \cup(3, \infty)$
Removable Disc: Hole at $(-6,2)$

$$
g(x)=\frac{3 x^{2}+16 x-12}{x^{2}+2 x-24}
$$

NonRemovable Disc: VA at $x=4$ Horizontal Asymptote: $y=3$
Increasing: None
Decreasing: $(-\infty,-6) \cup(-6,4) \cup(4, \infty)$

End Behavior, written as limits. The following limits $\lim _{x \rightarrow-6} g(x)=2 \quad \lim _{x \rightarrow 4} g(x)=D N E$

$$
\begin{array}{ll}
\lim _{x \rightarrow \infty} g(x)=3 & \lim _{x \rightarrow-\infty} g(x)=3 \\
\lim _{x \rightarrow 4^{-}} g(x)=-\infty & \lim _{x \rightarrow 4^{+}} g(x)=\infty
\end{array}
$$

LIMIT PRACTICE HANDOUT

THIS EXTRA HANDOUT IS ON THE WEBSITE, IF YOU'D LIKE MORE PRACTICE \because

HW DAY 7:

PACKET P. 9 AND HANDOUT INTRO TO LIMITS (ON WEBSITE)

