DAY 7 **LIMITS PART 2 - WHAT ABOUT LIMITS IN THE MIDDLE OF THE FUNCTION?**

WARM-UPTIP: You may want to print "Day 7 Graphs for Notes" - inDAY 7Power Point area of website - to help with notetaking :)

Find the requested information.

•1) $g(x) = \frac{x^4}{x^4 - 1}$

Increasing:

Decreasing:

HINT: find extrema 1st

Domain:

Express End Behaviors using proper Limit Notation

Range:

• 2)
$$f(x) = x^3 - 2x^2 - 3x$$

Increasing:

Decreasing:

Domain:

Range:

Express End Behaviors using proper Limit Notation

TIP: You may want to print "Day 7 Graphs for Notes" - in Power Point area of website - to help with notetaking :)

Find the requested information.

WARM-UP DAY 7

Decreasing:

Increasing:

Domain:

Range:

NORMAL FLOAT AUTO a+bi RADIAN MP Y1=X^4/(X^4-1) X=0 Y=0

Express End Behaviors using proper Limit Notation

WARM-UP DAY 7

Find the requested information.

Local Max 0.88 occurs at x = -0.54

Local Min -6.06 occurs at x = 1.87

HINT: find extrema 1st

Domain:

Range:

Express End Behaviors usir NORMAL FLOAT AUTO a+bi RADIAN MP CALC MINIMUM proper Limit Notation Y1=X3-2X2-3X

WARM-UP DAY 7 ANSWERS

Find the requested information.

Local Max 0 occurs at x = 0

Increasing: $(-\infty, -1) \cup (-1, 0)$ Decreasing: $(0, 1) \cup (1, \infty)$ Domain: $(-\infty, -1) \cup (-1, 1) \cup (1, \infty)$ Range: $(-\infty, 0] \cup (1, \infty)$

End Behaviors using Proper Limit Notation:

 $\lim_{x\to\infty}f(x)=1$

 $\lim_{x\to\infty}f(x)=1$

WARM-UP DAY 7 ANSWERS

Find the requested information

• 2) $f(x) = x^3 - x^2 - 2x$

Local Max 0.88 occurs at x = -0.54

Local Min -6.06 occurs at x = 1.87

Increasing: $(-\infty, -0.54) \cup (1.87, \infty)$ Decreasing:(-0.54, 1.87)Domain: $(-\infty, \infty)$ Range: $(-\infty, \infty)$

End Behavior using Proper Limit Notation:

 $\lim_{x\to\infty}f(x)=\infty$

$$\lim_{x\to\infty}f(x)=-\infty$$

HW DAY 7:

PACKET P.9 AND HANDOUT INTRO TO LIMITS (ON WEBSITE)

<u>NOTES DAY 7</u>: LIMITS PART 2

LIMITS TO CERTAIN VALUES & LIMITS AT LEFT-HAND AND RIGHT-HAND SIDES

USE "Day 7 Graphs for Notes" handout in Power Point area of Website for help taking notes today ::

REMEMBER THE DEFINITION OF A LIMIT

 If f(x) becomes arbitrarily close to a unique number L as x approaches c from either side, the <u>limit of f(x)</u> as x approaches c is L.

•L is a y-value! c is an x-value! $\lim_{x \to c} f(x) = L$

TAKE A LOOK AT THIS GRAPH...

- •Remember, a limit is asking what y-value the function is approaching as x gets close to some value.
- •Using the definition of a limit, I could say:

 $\lim_{x \to 0} f(x) =$ $\lim_{x \to 4} f(x) =$ $\lim_{x \to -4} f(x) =$

NOTICE: The function itself DOES NOT exist at x = 0, but the limit does!

TAKE A LOOK AT THIS GRAPH... ANSWERS

- •Remember, a limit is asking what y-value the function is approaching as x gets close to some value.
- •Using the definition of a limit, I could say:

NOTICE: The function itself DOES NOT exist at x = 0, but the limit does!

The existence/non-existence of f(x) at x = chas NO BEARING on the existence of the limit of f(x) as x approaches c.

EXAMPLE...

 $\lim_{x \to -3} f(x) =$

f(-3) =

 $\lim_{x\to 3} f(x) =$

f(3) =

EXAMPLE... ANSWERS

 $\lim_{x \to -3} f(x) = \mathbf{3}$

f(-3) = 1

 $\lim_{x \to 3} f(x) = -2$ f(3) = -2

LIMITS AT "HOLE"

• Ex: Graph it, find the domain, and find value of the limit requested.

 $f(x) = \frac{(x+2)^2}{x+2}$

Domain:

LIMITS AT "HOLE" • Ex: Graph it, find the domain, and find value of the limit requested. $f(x) = \frac{(x+2)^2}{x+2} - (x+2)^2$ Hole (-2,0)	Remember, a hole occurs when there is a factor in the denominator that $can be canceled out$ when algebraic steps are taken.
$\lim_{x \to -2} f(x) =$	Ļ
imit at a hole will always	

Remember, a hole occurs when there is a factor in the denominator that <u>can be</u> <u>canceled out</u> when algebraic steps are taken.

*The limit at a hole will always be the **y-value of the hole!!**

□ Write this down!

LIMITS AT "*HOLE*" ANSWERS

 $x \rightarrow -2$

Ex: Graph it and write the domain.

$$f(x) = \frac{(x+2)^2}{x+2}$$

Domain:
$$(-\infty, -2) \cup (-2, \infty)$$

lim $f(x) = 0$

*The limit at a hole will always be the **y-value of the hole!!**

= ()

Remember, a hole occurs when there is a factor in the denominator that can be **<u>canceled out</u>** when algebraic steps are taken.

WHAT ABOUT THIS....

 $\lim_{x \to 0} f(x) = ?$

Even though the two curves are on different sides of x = 0, since both curves approach the same y-value, as x approaches 0, we have a limit. \odot

WHAT ABOUT THIS... ANSWERS

$$\lim_{x\to 0} f(x) = ? \quad \infty$$

Even though the two curves are on different sides of x = 0, since **both curves approach** the **same y-value**, as x approaches 0, we have a limit. 😳

LIMIT AT VERTICAL ASYMPTOTE

- Using this example, find the domain and graph it.
 - D:
- "Describe" the behavior of the y-values as the x-values **approach** the vertical asymptote. From the left: From the right:
- Is there a simpler way to write this?

x+3

LIMIT AT VERTICAL ASYMPTOTE ANSWERS

- Using this example, find the domain and graph it. $D: (-\infty, 2) \cup (2, \infty)$ • "Describe" the behavior
- "Describe" the behavior of the y-values as the x-values **approach** the vertical asymptote.

From the left: — 🔿

Is there a simpler way to write this? Yes...

ONE-SIDED LIMITS

- •Let f(x) be defined on an interval (a, b), where a < b. If f(x) approaches arbitrarily close to L as x approaches a from within that interval, then we say that f has a **right-hand limit L** at a, and we write: $\lim_{x \to a^+} f(x) = L$
- •Let f(x) be defined on an interval (c, a) where c < a. If f(x) approaches arbitrarily close to M as x approaches a from within the interval, then we say that f has a left-hand limit M at a, and we write: $\lim_{x \to a^-} f(x) = M$

LIMIT NOTATION TO REPRESENT THIS DESCRIPTION.

Limit of f(x) as x approaches 2 from the left (negative side):

 $\lim f(x) = ?$ $x \rightarrow 2^{-}$

LIMIT NOTATION TO REPRESENT THIS DESCRIPTION. Limit of f(x) as x approaches 2 from the left (negative side): lim 11 k 🖍 🥒 💌

2

LIMIT NOTATION TO REPRESENT THIS DESCRIPTION. ANSWER

Limit of f(x) as x approaches 2 from the left (negative side):

 $\lim_{x\to 2^-} f(x) = ?$

 $\lim_{x\to 2^-} f(x) = -\infty$

LIMIT NOTATION:

Limit of f(x) as x **approaches** 2 from the <u>right (positive</u> <u>side)</u>:

 $\lim_{x\to 2^+} f(x) = ?$

LIMIT NOTATION:

Limit of f(x) as x approaches 2 from

side)

 $x \rightarrow 2^+$

II 🦎 🥕 🛋 🗆

the right (positive

 $\lim f(x) =$

LIMIT NOTATION:

Limit of f(x) as x **approaches** 2 from the **right (positive side)**:

 $\lim_{x\to 2^+} f(x) = ?$ $\lim_{x\to 2^+} f(x) = \infty$

SO THE RESULT????

Limit of f(x) as x **approaches** 2:

 $\lim_{x\to 2} f(x) = ?$

SO THE RESULT????

Limit of f(x) as x approaches 2:

$$\lim_{x\to 2} f(x) = ?$$

DOES NOT EXIST! (a.k.a. "DNE") Because the graph approaches different y-values depending on the direction you're approaching x = 2

SO, A LIMIT DOES NOT EXIST (DNE) IF:

- •f(x) approaches a different value from the right side than from the left.
- •f(x) oscillates between two fixed values as x approaches c.

 Ex: Graph y = sin(x). Find limit as x approaches infinity.
 DOES NOT EXIST!

WHAT ARE YOUR THOUGHTS ON THIS?

WHAT ARE YOUR THOUGHTS ON THIS? ANSWER

WHAT ABOUT THIS??

 $\lim_{x \to 1} f(x) =$ $\lim_{x \to -2} f(x) =$ $\lim_{x \to -5} f(x) =$ WHAT ABOUT THIS?? $\lim_{\substack{x \to 1 \\ x \to -2}} f(x) =$ **Issues!** $\lim_{x \to -5} f(x) =$ $\lim_{x \to 0} f(x) =$ $\lim_{x \to 2} f(x) =$ No issues!

WHAT ABOUT THIS??

ANSWERS $\lim_{x \to 1} f(x) = \mathsf{DNE}$ $x \rightarrow 1$ $\lim_{x \to -2} f(x) = \mathsf{DNE}$ $\lim_{x\to -5} f(x) = \mathbf{0}$ **Issues!**

YOU TRY! EVALUATE.

 $\lim_{x\to -2^-} f(x) =$

 $\lim_{x\to -2^+} f(x) =$

 $\lim_{x\to 1^-} f(x) =$

 $\lim_{x\to 1^+} f(x) =$

YOU TRY! EVALUATE.

ANSWERS

 $\lim_{x \to -2^-} f(x) = \mathbf{0}$

- $\lim_{x \to -2^+} f(x) = -\mathbf{I}$
- $\lim_{x \to 1^-} f(x) = -1$
- $\lim_{x\to 1^+} f(x) = 2$

 $\lim_{x \to -4} f(x) =$ $\lim_{x\to -4^-} f(x) =$ $\lim_{x \to -1} f(x) =$ $\lim_{x \to 4} f(x) =$

ANSWERS

CONTINUOUS DEFINITION AGAIN...

•Function *f* is continuous at a point *a* if the following conditions are satisfied.

f(a) is defined

 $\lim_{x\to a} f(x) \text{ exists}$

 $\lim_{x \to a} f(x) = f(a)$

PRACTICE

- Find the values requested for $g(x) = \frac{3x^2 + 16x 12}{x^2 + 2x 24}$ D: **R**: **Removable Disc:** NonRemovable Disc: Horizontal Asymptote: Increasing: Decreasing: End Behavior, written as limits The following limits
 - $\lim_{x\to 4^+} g(x) =$ $\lim_{x \to -6} g(x) = \lim_{x \to 4} g(x) = \lim_{x \to 4^{-}} g(x) =$

PRACTICE ANSWERS

• Find the values requested for

D: $(-\infty, -6) \cup (-6, 4) \cup (4, \infty)$ R: $(-\infty, 2) \cup (2, 3) \cup (3, \infty)$ Removable Disc: Hole at (-6, 2) NonRemovable Disc: VA at x = 4Horizontal Asymptote: y = 3Increasing: None Decreasing: $(-\infty, -6) \cup (-6, 4) \cup (4, \infty)$ End Behavior, written as limits. $\lim g(x) = 3$ The following limits $x \rightarrow \infty$ $\lim_{x\to -6} g(x) = 2$ $\lim_{x \to 4} g(x) = DNE$ $\lim_{x\to 4^-}g(x)=-\infty$

$$3x^{2} + 16x - 12$$

$$x^{2} + 2x - 24$$

g(x)

 $= 3 \quad \lim_{x \to -\infty} g(x) = 3$

 $\lim_{x\to 4^+} g(x) = \infty$

LIMIT PRACTICE HANDOUT

THIS EXTRA HANDOUT IS ON THE WEBSITE, IF YOU'D LIKE MORE PRACTICE

HW DAY 7:

PACKET P.9 AND HANDOUT INTRO TO LIMITS (ON WEBSITE)