Unit 5 Day 7

Chain Rule

Warm Up

Find $g(h(x))$ and simplify.

1. $g(x)=\frac{2 x-1}{3 x^{2}+2} ;$ and $h(x)=x-5$

Given $h(x)=f(g(x))$ below, identify $f(x)$ and $g(x)$.
2. $h(x)=\sqrt{x^{2}-7}$

Find an equation of a tangent line to the given function.
3. $g(x)=\frac{2 x-1}{3 x^{2}+2} ; x=-2$

Warm Up ~ ANSWERS

Find $g(h(x))$ and simplify.

1. $g(x)=\frac{2 x-1}{3 x^{2}+2} ;$ and $h(x)=x-5$

$$
\begin{aligned}
& g(h(x))=g(x-5) \\
& \quad=\frac{2(x-5)-1}{3(x-5)^{2}+2}=\frac{2 x-10-1}{3\left(x^{2}-10 x+25\right)+2} \\
& \quad=\frac{2 x-11}{3 x^{2}-30 x+77}
\end{aligned}
$$

Given $\mathrm{h}(\mathrm{x})=\mathrm{f}(\mathrm{g}(\mathrm{x})$) below, identify $\mathrm{f}(\mathrm{x})$ and $\mathrm{g}(\mathrm{x})$.
2. $h(x)=\sqrt{x^{2}-7} \quad f(x)=\sqrt{x} \quad g(x)=x^{2}-7$

Warm Up ~ ANSWERS

Find an equation of a tangent line to the given function.

$$
\text { 3. } \begin{aligned}
& g(x)=\frac{2 x-1}{3 x^{2}+2} ; x=-2 \\
& y+\frac{5}{14}=-\frac{8}{49}(x+2) \\
& y=-\frac{8}{49} x-\frac{67}{98}
\end{aligned}
$$

HW Questions?

Notes: Chain Rule

Comparing Prior Skills to New Skills

Find $\frac{d}{d x}$ using Product Rule

Find $\frac{d}{d x}$ using Chain Rule

The Chain Rule

Remember the composition of two functions?

$$
f \circ g=f(g(x))
$$

The chain rule is used to find the derivative of the composition of two functions.

$$
\frac{d}{d x}[f(g(x))]=f^{\prime}(g(x)) g^{\prime}(x)
$$

Chain Rule $\quad \frac{d}{d x}[f(g(x))]=f^{\prime}(g(x)) g^{\prime}(x)$

$y=\left(2 x^{3}+x+7\right)^{5}$

Derivative of outside function evaluated at inside function

$$
\text { Chain Rule } \quad \frac{d}{d x}[f(g(x))]=f^{\prime}(g(x)) g^{\prime}(x)
$$

$$
y=\left(2 x^{3}+x+7\right)^{5}
$$

$$
\frac{d y}{d x}=(\underbrace{\left(5\left(2 x^{3}+x+7\right)^{4}\right.}) \cdot \underbrace{\left(6 x^{2}+1\right)}
$$

Derivative of outside function evaluated at inside function

Ex: Find y^{\prime} for $\mathrm{y}=\left(\mathrm{x}^{2}+1\right)^{3} \quad \frac{d}{d x}[f(g(x))]=f^{\prime}(g(x)) g^{\prime}(x)$

$$
\begin{aligned}
& f(x)=x^{3} \\
& g(x)=x^{2}+1
\end{aligned}
$$

Ex: Find y ' for $y=\left(3 x-2 x^{2}\right)^{3}$

$$
\begin{aligned}
& f(x)=x^{3} \\
& g(x)=3 x-2 x^{2}
\end{aligned}
$$

Ex: Find y^{\prime} for $\mathrm{y}=\left(\mathbf{x}^{2}+1\right)^{3} \quad \frac{d}{d x}[f(g(x))]=f^{\prime}(g(x)) g^{\prime}(x)$

$$
\begin{aligned}
& f(x)=x^{3} \\
& g(x)=x^{2}+1 \\
& y^{\prime}=3\left(x^{2}+1\right)^{2}(2 x)=6 x\left(x^{2}+1\right)^{2}
\end{aligned}
$$

Ex: Find y ' for $y=\left(3 x-2 x^{2}\right)^{3}$

$$
\begin{aligned}
& f(x)=x^{3} \\
& g(x)=3 x-2 x^{2}
\end{aligned}
$$

$$
y^{\prime}=3\left(3 x-2 x^{2}\right)^{2}(3-4 x)
$$

Examples: Find the $\frac{d}{d x}[f(g(x))]=f^{\prime}(g(x)) g^{\prime}(x)$

 derivative of the following.$$
\text { Ex. } y=\sqrt{x+1}
$$

Rewrite as $(x+1)^{\frac{1}{2}}$

You Try!
Rewrite as $(9 x+1)^{\frac{1}{2}}$

Examples ANSWERS: Find the derivative of the

$$
\frac{d}{d x}[f(g(x))]=f^{\prime}(g(x)) g^{\prime}(x)
$$ following.

Ex. $y=\sqrt{x+1}$
Rewrite as $(x+1)^{\frac{1}{2}}$

$$
y^{\prime}=\frac{1}{2 \sqrt{x+1}}
$$

You Try!
Ex. $y=\sqrt{9 x+1} \quad$ Rewrite as $(9 x+1)^{\frac{1}{2}}$

$$
y^{\prime}=\frac{9}{2 \sqrt{9 x+1}}
$$

$$
\frac{d}{d x}[f(g(x))]=f^{\prime}(g(x)) g^{\prime}(x)
$$

Ex:
Find $\mathrm{f}^{\prime}(\mathrm{x})$ for $f(x)=\sqrt[3]{\left(x^{2}+2\right)^{2}}$
$=$

$$
\frac{d}{d x}[f(g(x))]=f^{\prime}(g(x)) g^{\prime}(x)
$$

Ex:
Find $\mathrm{f}^{\prime}(\mathrm{x})$ for $f(x)=\sqrt[3]{\left(x^{2}+2\right)^{2}}$

$$
=\left(x^{2}+2\right)^{2 / 3}
$$

$$
f^{\prime}(x)=\frac{2}{3}\left(x^{2}+2\right)^{-1 / 3}(2 x)=\frac{4 x}{3 \sqrt[3]{x^{2}+2}}
$$

Differentiate

$g(t)=\frac{-7}{(2 t-3)^{2}}$ rewritten as

Differentiate ANSWERS

$g(t)=\frac{-7}{(2 t-3)^{2}}$ rewritten as $=-7(2 t-3)^{-2}$

$$
g^{\prime}(t)=14(2 t-3)^{-3}(2)=\frac{28}{(2 t-3)^{3}}
$$

Differentiate- This needs the product and chain rule!
$h(x)=x^{2} \sqrt{1-x^{2}}$ rewritten as

Remember the Product Rule??

$$
\frac{d}{d x}[f(x) g(x)]=g(x) f^{\prime}(x)+f(x) g^{\prime}(x)
$$

Differentiate- This needs the product and chain rule!
$h(x)=x^{2} \sqrt{1-x^{2}} \quad$ rewritten as $x^{2}\left(1-x^{2}\right)^{1 / 2}$
Remember the Product Rule??

$$
\begin{aligned}
& \frac{d}{d x}[f(x) g(x)]=f(x) g^{\prime}(x)+g(x) f^{\prime}(x) \\
& f(x)=x^{2} \quad g(x)=\left(1-x^{2}\right)^{\frac{1}{2}}
\end{aligned}
$$

$h^{\prime}(x)=x^{2}\left(\frac{1}{\not 2}\right)\left(1-x^{2}\right)^{-1 / 2}(-\nsim x)+\left(1-x^{2}\right)^{1 / 2}(2 x)$

$$
h^{\prime}(x)=-x^{3}\left(1-x^{2}\right)^{-1 / 2}+2 x\left(1-x^{2}\right)^{1 / 2}
$$

Find the derivative of the following.

$$
\text { 1. } y=\sqrt{-x^{4}-1}(-x-2)
$$

ANSWER: Find the derivative of the following.

$$
\text { 1. } y=\sqrt{-x^{4}-1}(-x-2)
$$

$$
y^{\prime}=-\sqrt{-x^{4}-1}+\frac{2 x^{4}+4 x^{3}}{\sqrt{-x^{4}-1}}
$$

You Try!

Find the derivative of the following.

$$
\text { 2. } y=(3 x-1)\left(-3 x^{2}-4\right)^{-3}
$$

Find the derivative of the following.
2. $y=(3 x-1)\left(-3 x^{2}-4\right)^{-3}$

Example Problems (GETTING your ANSWER to MATCH a GIVEN ANSWER)-Find the derivative of the following.

$$
\text { 1. } y=x^{3}(2 x-5)^{4}
$$

Example Problems (GETTING your ANSWER to MATCH a GIVEN ANSWER)-Find the derivative of the following.

$$
\text { 1. } y=x^{3}(2 x-5)^{4}
$$

$$
\frac{d y}{d x}=(2 x-5)^{3}\left(14 x^{3}-15 x^{2}\right)
$$

Differentiate

$$
f(x)=\frac{x}{\sqrt[3]{x^{2}-1}} \quad \text { rewritten as }
$$

Quotient Rule

Bot * Top' - Top * Bot' (Bot) ${ }^{2}$

Differentiate

$$
f(x)=\frac{x}{\sqrt[3]{x^{2}+4}} \text { rewritten as }=\frac{x}{\left(x^{2}+4\right)^{1 / 3}}
$$

Quotient Rule $\frac{\text { Bot * Top' - Top *Bot' }}{(\text { Bot })^{2}}$

$$
\begin{aligned}
& f^{\prime}(x)=\frac{\left(x^{2}+4\right)^{1 / 3}(1)-x(1 / 3)\left(x^{2}+4\right)^{-2 / 3}(2 x)}{\left(x^{2}+4\right)^{2 / 3}} \\
& f^{\prime}(x)=\frac{\left(x^{2}+4\right)^{1 / 3}-\left(2 x^{2} / 3\right)\left(x^{2}+4\right)^{-2 / 3}}{\left(x^{2}+4\right)^{2 / 3}}
\end{aligned}
$$

Differentiate

$$
y=\left(\frac{3 x-1}{x^{2}+3}\right)^{2}
$$

Differentiate

$$
\begin{aligned}
& y=\left(\frac{3 x-1}{x^{2}+3}\right)^{2} \\
& y^{\prime}=2\left(\frac{3 x-1}{x^{2}+3}\right)^{1}\left(\frac{\left(x^{2}+3\right)(3)-(3 x-1)(2 x)}{\left(x^{2}+3\right)^{2}}\right) \\
&=\frac{2(3 x-1)\left(3 x^{2}+9-6 x^{2}+2 x\right)}{\left(x^{2}+3\right)^{3}} \\
&=\frac{2(3 x-1)\left(-3 x^{2}+2 x+9\right)}{\left(x^{2}+3\right)^{3}}
\end{aligned}
$$

Extra Warm-Up \#2 on next slide

Warm Up ~ ANSWERS

Find an equation of a tangent line to the given function.

$$
\begin{aligned}
& \text { 1. } f(x)=(x+2)\left(4 x^{2}+3 x\right. \\
& \text { 2. } g(x)=\frac{2 x-1}{3 x^{2}+2} ; x=-2 \\
& y+\frac{5}{14}=-\frac{8}{49}(x+2) \\
& y=-\frac{8}{49} x-\frac{67}{98}
\end{aligned}
$$

$$
y+26=47(x+3)
$$

$$
y=47 x+115
$$

