Day 6 ~ Increasing/Decreasing , and Extrema

A Graphical Approach

Warm Up ~ Day 6 1) $f(x) = \frac{x-4}{x^2-7x+12}$

Find the a) domain b) x & y interceptsc) range d) discontinuitiese) end behavior using limit notation

2)
$$g(x) = \sqrt{3x^2 + 7x - 6}$$

Find the a) domain b) x & y intercepts c) range

Warm Up ~ Day 6 ANSWERS 1) $f(x) = \frac{x-4}{x^2 - 7x + 12}$

Find the

- a) domain $D: (-\infty,3) \cup (3,4) \cup (4,\infty)$
- b) x & y intercepts x int: none $y int: (0, -\frac{1}{3})$
- c) range $R: (-\infty, 0) \cup (0, 1) \cup (1, \infty)$
- d) discontinuities Hole (Removable Disc.) at (4,1)
 V.A. (NonRemovable Disc.) at x=3
 e) end behavior using limit notation

$$\lim_{x \to \infty} f(x) = 0 \qquad \qquad \lim_{x \to -\infty} f(x) = 0$$

Warm Up ~ Day 6 ANSWERS 2) $g(x) = \sqrt{3x^2 + 7x - 6}$ Find the a) domain *Domain*: $(-\infty, -3] \cup [\frac{2}{3}, \infty)$ b) x & y intercepts x - int: (-3,0) and $(\frac{2}{3},0)$ y - int: nonec) range Range: $[0,\infty)$

Warm Up ~ Day 6 1) $f(x) = \frac{x-4}{x^2 - 7x + 12}$

Find the a) domain b) x & y interceptsc) range d) discontinuitiese) end behavior using limit notation

Warm Up ~ Day 6 1) $f(x) = \frac{x-4}{x^2 - 7x + 12}$ Find the a) domain b) x & y intercepts (-w, 3) u(3, 4) u(4) (-w) c) range d) discontinuities e) end behavior using limit notation (-w, 3) u(3, 4) u(4) (-w) c) range d) discontinuities e) end behavior using limit notation (-w, 3) u(3, 4) u(4) (-w) c) range d) discontinuities e) end behavior using limit notation (-w, 3) u(3, 4) u(4) (-w) c) range d) discontinuities e) end behavior using limit notation (-w, 3) u(3, 4) u(4) (-w) c) range d) discontinuities e) end behavior using limit notation	
Warm Up ~ Day 6 The advance of the	0
Find the a) domain b) x & y intercepts $(-\infty, 3) u(3, 4) u(4, \infty)$ c) range d) discontinuities e) end behavior using limit notation $(-\infty, 3) u(3, 4) u(4, \infty)$ c) $(0, -\frac{1}{2})$	
$\frac{4}{no} \times -int. \gamma = -\frac{1}{3}$	

Warm Up ~ Day 6

2) $g(x) = \sqrt{3x^2 + 7x - 6}$ Find the a) domain b) x & y intercepts c) range

Announcements Tonight's Homework

Packet p. 7-8

Part 1 – Increasing, Decreasing, Max and Min

8

Local/Relative Extrema

- <u>Local Maximum</u> the maximum **y-value** of a function on some small interval
- <u>Local Minimum</u> the minimum **y-value** of a function on some small interval
- Local Extrema are also called "relative" extrema

Absolute Extrem

- Absolute extrema are the maximum and minimum of <u>all</u> range values.
- Report all extrema (local or absolute) as:
 Max/Min y-value occurs at x-value
- Occurs when y-values change from increasing to decreasing

Absolute Max Example: Maximum 3 occurs at x = 4

Remember, report all extrema (local or absolute) as:

- Max/Min is #, occurs at #
- Max/Min is y-value,
 Occurs at x-value Remember, if given a
 function, you can use your calculator to find max's and min's!

Max: 4.08 occurs at x = -1.15 Min: -2.08 occurs at x = 1.15

Local & Absolute Extrema

 Note that local and absolute extrema occur when y-values change from increasing to decreasing or vice versa

Increasing and Decreasing

Constant and Mixed Intervals

Increase, Decrease, and

Increase and Decrease Always use x-values to report increasing, decreasing, and constant intervals!

Mixed

Increasing?

(-∞,-2) ∪ (2,∞)

Decreasing?

(-2, 2)

Increase, Decrease, and Constant

Always use **x-values** to report increasing/decreasing/constant intervals!

Increasing/Decreasing (Algebraic Models)

• Ex:
$$f(x) = (x+2)^2$$

- What is the interval when this function is:
 - Increasing
 - Decreasing

HINT: 1st Get any Max and/or Min Values in Calculator OR with Algebra!

Increasing/Decreasing (Algebraic Models) ANSWERS

• Ex:
$$f(x) = (x+2)^2$$

- What is the interval when this function is:
 - Increasing (-2,∞)
 - Decreasing $(-\infty, -2)$

Always use x values!

(-2,0)

You Try!

1) Back to this example... $g(x) = x^3 - 4x + 1$

When is the function increasing?

When is the function decreasing?

2) Using the graph shown to the right,

- When is the function increasing?
- When is the function decreasing?

You Try!...ANSWERS

1) We found the extrema:

Max: 4.08 occurs at x = -1.1 Min: -2.08 occurs at x = 1.1

$$g(x) = x^3 - 4x + 1$$

When is the function increasing?

(-∞,-1.15) U (1.15,∞)

When is the function decreasing?

(-1.15,1.15)

You Try!

2) Using the graph shown to the right,

First, find the extrema Max: 2 occurs at x = 0 Min: -2 occurs at x = -2 and 2

- When is the function increasing?
 (-2,0) U (2,∞)
- When is the function decreasing?

(-∞,-2) U (0,2)

Student Practice

- Find the intervals increasing/decreasing.
- State the domain and range.

Decreasing:

Domain:

• B)
$$h(x) = |x - 4| + 5$$

Range:

Increasing:

Student Practice ANSWERS

- Find the intervals increasing/decreasing.
- State the domain and range.

• A)
$$g(x) = \frac{x^2}{x^2 - 1}$$

B) $h(x) = |x - 4| + 5$
B) $h(x) = |x - 4| + 5$
Increasing: $(-\infty, -1) \cup (-1, 1) \cup (1, \infty)$
Increasing: $(-\infty, 0] \cup (1, \infty)$
Increasing: $(-\infty, 4)$
Decreasing: $(-\infty, 4)$
Decreasing: $(-\infty, \infty)$
Decreasing: $(-\infty, \infty)$

Practice! What is the EQUATION of the horizontal asymptote for the following functions? Then write the end behavior using limits.

$$g(x) = -\frac{2x^5}{5x^4 + 6}$$

Pottom > Ton

$$f(x) = \frac{2x^3 + 7}{5x - 7x^3 + 15}$$

$$h(x) = \frac{3x + 14}{9x^2}$$

Practice! What is the EQUATION of the horizontal asymptote for the following functions? Then write the end behavior using limits.

More Practice: Increasing/Decreasing f(x) = |x+1| + |x-1| - 3 $h(x) = \frac{1}{2}(x+2)^2 - 1$ $f(x) = x^3 - x^2 - 2x$

Aprophe	Difference Difference <thdifference< th=""> Difference Differen</thdifference<>		Background Layout+ Theme Transition	NORMAL FLOAT AUTO REAL RADIAN HP	
	20-17 56-57-18 <u>38-84</u> 97	NORHAL FLOAT AUTO BEAL BADIAN HP	More Practice: Increasing/Decreasing	(-0.55, 0.63)	
fuite fuite RA	$\label{eq:second} \begin{array}{c} {\rm det} \ bar > b \in \Sigma(1/T)) \ det \ bar annotation the two the bar annotation $	(-1,-1) (1,-1)	f(x) = x+1 + x-1 - 3 $h(x) = \frac{1}{2}(x+2)^2 - 1$ $f(x) = x^3 - x^2 - 2x$	7 (1.22,-2.11)	
Mare	ePractice: exing/Decreasing f(t) = x + + - 1 - 3 $A(t) = y_i(x + 2)^2 - 1$ $f(x) = x^2 - x^2 - 2x$	K	inc. $(-\infty, -0.55)$		
Incre	e Practice ANSWERS: esting/Decreasing f(r)= r+ + r- -3	Click to add speaker notes	Turkada di Mili 11 1		
		×		0	3

Textbook p. 98 #30, 32, 34

More Practice ANSWERS: Increasing/Decreasing • 30. f(x) = |x+1| + |x-1| - 3inc. (1,∞) dec. (-∞,1) • 32. $h(x) = \frac{1}{2}(x+2)^2 - 1$ inc. (-2,∞) dec. (-∞,-2) • 34. $f(x) = x^3 - x^2 - 2x$ inc. (-∞,-0.55) U (1.22,∞) dec. (-0.55,1.22)

Textbook p. 98 #30, 32, 34

Practice

Find the a) domain b) x & y intercepts c) range d) discontinuities e) end behavior using limit notation

•1)
$$h(x) = \frac{7x + 15}{2x^2}$$

• 2)
$$g(x) = \frac{4x^3}{5x^2 + 9}$$

Practice ANSWERS

Find the a) domain b) x & y intercepts c) range
 d) discontinuities e) end behavior using limit notation

$$D: (-\infty, 0) \cup (0, \infty) \quad R: [-0.4, \infty)$$
$$x - \operatorname{int} : (\frac{-15}{7}, 0) \quad y - \operatorname{int} : none$$
$$\lim_{x \to \infty} f(x) = 0 \qquad \lim_{x \to -\infty} f(x) = 0$$

(x) =
$$\frac{4x^3}{5x^2+9}$$

 $h(x) = \frac{7x + 15}{2x^2}$

• 1)

$$D: (-\infty, \infty) \qquad R: (-\infty, \infty)$$
$$x - \text{int}: (0,0) \qquad y - \text{int}: (0,0)$$
$$\lim_{x \to \infty} g(x) = \infty \qquad \lim_{x \to -\infty} g(x) = -\infty$$