Day 6 ~

Increasing/Decreasing
, and Extrema
A Graphical Approach

Warm Up ~ Day 6

1) $f(x)=\frac{x-4}{x^{2}-7 x+12}$

Find the a) domain \quad b) x \& y intercepts
c) range d) discontinuities
e) end behavior using limit notation
2) $g(x)=\sqrt{3 x^{2}+7 x-6}$
$\begin{array}{ll}\text { Find the a) domain } & \text { b) } x \& y \text { intercepts }\end{array}$ c) range

Warm Up ~ Day 6 ANSWERS
1)

$$
f(x)=\frac{x-4}{x^{2}-7 x+12}
$$

Find the
a) domain $D:(-\infty, 3) \cup(3,4) \cup(4, \infty)$
b) $\mathrm{x} \& \mathrm{y}$ intercepts x-int:none y-int: $(0,-1 / 3)$
c) range $R:(-\infty, 0) \cup(0,1) \cup(1, \infty)$
d) discontinuities Hole (Removable Disc.) at $(4,1)$

$$
\text { V.A. (NonRemovable Disc.) at } x=3
$$

e) end behavior using limit notation

$$
\lim _{x \rightarrow \infty} f(x)=0 \quad \lim _{x \rightarrow-\infty} f(x)=0
$$

Warm Up ~ Day 6 ANSWERS

2) $g(x)=\sqrt{3 x^{2}+7 x-6}$

Find the
a) domain Domain: $(-\infty,-3] \cup\left[\frac{2}{3}, \infty\right)$
b) $x \& y$ intercepts $x-\operatorname{int}:(-3,0)$ and $(2 / 3,0)$

$$
y \text {-int:none }
$$

c) range

$$
\text { Range: }[0, \infty)
$$

Warm Up ~ Day 6

1) $f(x)=\frac{x-4}{x^{2}-7 x+12}$

Find the a) domain \quad b) x \& y intercepts
c) range d) discontinuities
e) end behavior using limit notation

Warm Up ~ Day 6

2) $g(x)=\sqrt{3 x^{2}+7 x-6}$

Find the a) domain
b) x \& y intercepts c) range

Announcements

Tonight's Homework
Packet p. 7-8

Notes Day 6

Part 1 - Increasing, Decreasing, Max and Min

Local/Relative Extrema

- Local Maximum - the maximum y-value of a function on some small interval
- Local Minimum - the minimum y-value of a function on some small interval
- Local Extrema are also
 called "relative" extrema

Absolute Extrem

- Absolute extrema are the maximum and minimum of all range values.
- Report all extrema (local or absolute) as:
Max/Min y-value occurs at x-value
- Occurs when y-values change from increasing to decreasing

Absolute Max Example:
Maximum 3 occurs at $x=4$

Local \& Absolute Extrema

- What are the local extrema
of: $g(x)=x^{3}-4 x+1$

Remember, report all extrema (local or

Max: 4.08 occurs at $x=-1.15$ absolute) as:

Min: -2.08 occurs at $x=1.15$

- Max/Min is \#, occurs at \#
- Max/Min is y-value, Occurs at x-value Remember, if given a
function, you can use your calculator to find max's and min's!

Local \& Absolute Extrema

- Note that local and absolute extrema occur when y-values change from increasing to decreasing or vice versa

Increasing and Decreasing

Increasing

Decreasing

Constant and Mixed Intervals

Constant

Mixed

Increase, Decrease, and

 Constant Always use x-values to report increasing, decreasing, and constant intervals! Increasing?Decreasing?

$$
\begin{array}{ccc}
f(b)>f(a) & f(b)<f(a) & f(b)>f(a) \\
\text { where } b>a & \text { where } b>a & \text { where } b>a
\end{array}
$$

Increase and Decrease

ANSWERS

Always use x-values to report increasing, decreasing, and constant intervals!

Mixed

Increasing?
$(-\infty,-2) \cup(2, \infty)$
Decreasing?

$(-2,2)$

Increase, Decrease, and Constant

Always use x-values to report increasing/decreasing/constant intervals!

Increasing?

Decreasing?

Increase and Decrease

Always use \mathbf{x}-values to report increasing/decreasing intervals!

Mixed

Increasing? $(-5,0)$
Decreasing? $(-\infty,-5) \cup(0, \infty)$

Increasing/Decreasing (Algebraic Models)

- Ex:

$$
f(x)=(x+2)^{2}
$$

- What is the interval when this function is:
- Increasing

Decreasing

HINT: $1^{\text {st }}$ Get any Max and/or Min Values in Calculator OR with Algebra!

Increasing/Decreasing (Algebraic Models) ANSWERS

- Ex:

$$
f(x)=(x+2)^{2}
$$

- What is the interval when this function is:
- Increasing ($-2, \infty$)

- Decreasing (- ∞,-2)

You Try!

1) Back to this example...

$$
g(x)=x^{3}-4 x+1
$$

-When is the function increasing?

- When is the function decreasing?

2) Using the graph shown to the right,
-When is the function increasing?
-When is the function decreasing?

You Try!...ANSWERS

1) We found the extrema:

Max: 4.08 occurs at $x=-1.1$
Min: -2.08 occurs at $x=1.1$

$$
g(x)=x^{3}-4 x+1
$$

- When is the function increasing?

$$
(-\infty,-1.15) \cup(1.15, \infty)
$$

- When is the function decreasing?

$$
(-1.15,1.15)
$$

You Try!

2) Using the graph shown to the right,
First, find the extrema
Max: 2 occurs at $x=0$
Min: -2 occurs at $x=-2$ and 2

- When is the function increasing?

$$
(-2,0) \cup(2, \infty)
$$

-When is the function decreasing?

$$
(-\infty,-2) \cup(0,2)
$$

Student Practice

- Find the intervals increasing/decreasing.
- State the domain and range.
- A) $g(x)=\frac{x^{2}}{x^{2}-1}$

Increasing:
Decreasing:
Domain:

Range:
Increasing:

Student Practice ANSWERS

- Find the intervals increasing/decreasing.
- State the domain and range.
$x^{2} \quad$ Increasing: $(-\infty,-1) \cup(-1,0)$
- A) $g(x)=\frac{x}{x^{2}-1} \quad$ Decreasing: $\quad(0,1) \cup(1, \infty)$

Domain: $(-\infty,-1) \cup(-1,1) \cup(1, \infty)$
Range: $(-\infty, 0] \cup(1, \infty)$

- В) $h(x)=|x-4|+5$

Increasing: $(4, \infty)$
Decreasing: $(-\infty, 4)$
Domain: $(-\infty, \infty)$
Range: $[5, \infty)$

Practice! What is the EQUATION of the horizontal asymptote for the following functions? Then write the end behavior using limits.

$$
g(x)=-\frac{2 x^{5}}{5 x^{4}+6} \quad \begin{aligned}
& \text { Bottom }>\text { Top } \\
& y=0 \\
& \text { Same }=\text { ratio } \\
& \text { Top }>\text { Bottom } \\
& 0 \uparrow \text { No HA. }
\end{aligned}
$$

$$
f(x)=\frac{2 x^{3}+7}{5 x-7 x^{3}+15}
$$

$$
h(x)=\frac{3 x+14}{9 x^{2}}
$$

Practice! What is the EQUATION of the horizontal asymptote for the following functions? Then write the end behavior using limits.

$$
\begin{aligned}
& g(x)=-\frac{2 x^{5}}{5 x^{4}+6} \\
& \text { H.A. : none } \\
& \lim _{x \rightarrow \infty} g(x)=-\infty \\
& \lim _{x \rightarrow-\infty} g(x)=\infty \\
& \text { Bottom > Top } \\
& y=0 \\
& \text { Same = ratio } \\
& \text { Top > Bottom } \\
& \text { O } \mathrm{N} \text { 个 No HA. } \\
& f(x)=\frac{2 x^{3}+7}{5 x-7 x^{3}+15} \lim _{x \rightarrow \infty} f(x)=-\frac{2}{7} \\
& \text { H.A. : } y=-2 / 7 \\
& h(x)=\frac{3 x+14}{9 x^{2}} \quad \begin{array}{l}
\lim _{x \rightarrow \infty} h(x)=0 \\
\lim _{x \rightarrow-\infty} h(x)=0
\end{array}
\end{aligned}
$$

More Practice:

Increasing/Decreasing

$$
\begin{aligned}
& f(x)=|x+1|+|x-1|-3 \\
& h(x)=1 / 2(x+2)^{2}-1 \\
& f(x)=x^{3}-x^{2}-2 x
\end{aligned}
$$

Textbook p. 98 \#30, 32, 34

More Practice ANSWERS:

 Increasing/Decreasing- 30. $f(x)=|x+1|+|x-1|-3$
inc. $(1, \infty)$ dec. $(-\infty, 1)$
-32. $h(x)=1 / 2(x+2)^{2}-1$
inc. $(-2, \infty)$ dec. $(-\infty,-2)$
- 34. $f(x)=x^{3}-x^{2}-2 x$
inc. $(-\infty,-0.55) \cup(1.22, \infty)$
dec. (-0.55,1.22)
Textbook p. 98 \#30, 32, 34

Practice

Find the a) domain b) x \& y intercepts c) range
d) discontinuities e) end behavior using limit notation
-1) $h(x)=\frac{7 x+15}{2 x^{2}}$
-2) $g(x)=\frac{4 x^{3}}{5 x^{2}+9}$

Practice ANSWERS

- Find the a) domain b) x\&y intercepts c) range d) discontinuities e) end behavior using limit notation
-1)
$h(x)=\frac{7 x+15}{2 x^{2}}$

$$
\begin{array}{ll}
D:(-\infty, 0) \cup(0, \infty) & R:[-0.4, \infty) \\
x-\operatorname{int}:\left(\frac{-15}{7}, 0\right) & y \text {-int :none } \\
\lim _{x \rightarrow \infty} f(x)=0 & \lim _{x \rightarrow-\infty} f(x)=0
\end{array}
$$

- 2)

$$
g(x)=\frac{4 x^{3}}{5 x^{2}+9}
$$

$$
\begin{array}{|ll|}
\hline D:(-\infty, \infty) & R:(-\infty, \infty) \\
x-\operatorname{int}:(0,0) & y-\operatorname{int}:(0,0) \\
\lim _{x \rightarrow \infty} g(x)=\infty & \lim _{x \rightarrow-\infty} g(x)=-\infty \\
\hline
\end{array}
$$

