Unit 1 Day 5 Quiz Review & Quiz

Arrival

Turn OFF your phone & Turn it in to Blue Pockets

-> Look at the list by the poster to see which Pocket is yours today!

Get out:

- Quiz Review HW sheet
- Warm-Up paper

Day 6 First 8 in 8 video http://youtu.be/kDVFailK3b0?hd=1

We'll watch this while we practice ©

Warm Up Day 5: Create a Venn diagram to answer the questions.

- 1) 95 people attended a Super Bowl party for Super Bowl 50:
- 55 liked the Panthers
- 30 liked the Broncos
- 46 liked the Super Bowl Commercials
- 6 liked the Panthers and the Broncos
- 26 liked only the Panthers and the Commercials
- 18 liked Broncos and the Commercials
- 5 liked all three
- a. How many people do not like the Panthers, Broncos or Super Bowl Commercials?
- b. How many people only like the Panthers?

<u>/arn</u>	<u>n Up</u>	Part 2				
2.	Given sets	$\mathbf{U}=\{\mathbf{a},\mathbf{b},$	С,	n, o, p,	r, s, t} a	nd
	$P = \{p, a, n, n\}$, t, s} B	=	{b, r, o,	n, c, s}	
a) P	oc =	b)	ł	$P \cap B$	=	_
c) n	(B ^c) =	d)	K	$n(P \cup A)$	$B^c) = $	

3. Students are auditioning for the Honors Band. 6 clarinet players audition for 1st and 2nd chair; 7 flute players audition for 1st, 2nd, and 3rd chair; and 4 percussion players audition for 3 positions on the drum line. How many possible ways can the band be chosen?

4. A password must have 3 non-repeating letters followed by 2 numbers that are not 0, and then one of the following symbols, !, @, #, \$, %. How many passwords are possible?

5. How many ways are there to rearrange MATHEMATICS?

Warm Up: Create a Venn diagram

95 people attend a Super Bowl party:

- 55 like the Panthers
- 30 like the Broncos
- 46 like the Super Bowl Commercials
- 6 like the Panthers and the Broncos
- 26 like only the Panthers and the Commercials
- 18 like Broncos and the Commercials
- 5 like all three

Warm Up: Create a Venn diagram

95 people attended a Super Bowl party for SB 50:

- 55 liked the Panthers
- 30 liked the Broncos
- 46 liked the Super Bowl Commercials
- 6 liked the Panthers and the Broncos
- 26 liked only the Panthers and the Commercials
- 18 liked Broncos and the Commercials
- 5 liked all three

Warm Up: Create a Venn diagram and answer the questions

- a. How many people do not like the Panthers, Broncos or Super Bowl Commercials?
- b. How many people only like the Panthers?

Warm Up: Create a Venn diagram and answer the questions

- a. How many people do not like the Panthers,
 Broncos or Super Bowl Commercials?
- b. How many people only like the Panthers? 23

<u>/arn</u>	<u>n Up</u>	Part 2				
2.	Given sets	$\mathbf{U}=\{\mathbf{a},\mathbf{b},$	С,	n, o, p,	r, s, t} a	nd
	$P = \{p, a, n, n\}$, t, s} B	=	{b, r, o,	n, c, s}	
a) P	oc =	b)	ł	$P \cap B$	=	_
c) n	(B ^c) =	d)	K	$n(P \cup A)$	$B^c) = $	

3. Students are auditioning for the Honors Band. 6 clarinet players audition for 1st and 2nd chair; 7 flute players audition for 1st, 2nd, and 3rd chair; and 4 percussion players audition for 3 positions on the drum line. How many possible ways can the band be chosen?

4. A password must have 3 non-repeating letters followed by 2 numbers that are not 0, and then one of the following symbols, !, @, #, \$, %. How many passwords are possible?

5. How many ways are there to rearrange MATHEMATICS?

Warm Up Part 2 ANSWERS

2. Given sets $U = \{a, b, c, n, o, p, r, s, t\}$ and $P = \{p, a, n, t, s\}$ $B = \{b, r, o, n, c, s\}$

a) $P^{c} = \{b, c, o, r\}$ b) $P \cap B = \{n, s\}$ c) $n(B^{c}) = 3$ d) $n(P \cup B^{c}) = 5$

3. Students are auditioning for the Honors Band. 6 clarinet players audition for 1st and 2nd chair; 7 flute players audition for 1st, 2nd, and 3rd chair; and 4 percussion players audition for 3 positions on the drum line. How many possible ways can the band be chosen?

$$_{6}P_{2}\bullet_{7}P_{3}\bullet_{4}C_{3} = 25200$$

Warm Up Part 2 ANSWERS

4. A password must have 3 non-repeating letters followed by 2 numbers that are not 0, and then one of the following symbols, !, @, #, \$, %. How many passwords are possible?

26•25•24•9•9•5 = 6,318,000

5. How many ways are there to rearrange MATHEMATICS?

$$\frac{11!}{(2! \bullet 2! \bullet 2!)} = 4,989,600$$

because 2 M's, 2 A's, 2 T's

Quiz Review Questions?

Quiz Review

Given the following sets, determine whether each statement is true or false. Write out the word.

U= { a,b,c,d,e,f,g,h } A= {a,c,d,e,g } B= {b,e,f,g,h } 1. $A \subseteq B$ False 3. $f \in B$ True 2. $C \subseteq A$ True 4. $g \notin A$ False

Using the sets above, find ...

7.
$$n(A \cup C) = 5$$

8. $n(A \cap C) = 3$

$$U = \{ 1, 2, 3, 4, 5, 6, 7, 8, 9 \} \qquad A = \{ 1, 2, 3, 4, 5, 6 \}$$

 $B = \{2, 4, 6, 8\}$

 $C=\{a,e,g\}$

5. A=C False

6. Ø⊆B True

Find:

10.
$$A \cup B = [21, 2, 3, 4, 5, 6, 8]$$

11. $A \cap B = [22, 4, 6]$

12.
$$A \cap B^{c} = \begin{bmatrix} 1, 3, 5 \end{bmatrix}$$

13. $A^{c} \cap B = \begin{bmatrix} 283 \\ 283 \\ 849 \end{bmatrix}$

Tempty set is a subset of all sets 9. $n(A^c) = [3]$ 14. How many 7 digit phone numbers are possible if the first and second digits cannot be a zero or one?

- 15. In a 52 card deck, are drawing an ace and drawing a red card mutually exclusive? No! you can have an ace that is red.
- 16. Suppose you roll a pair of dice. Find the probability that:

Both dice show different numbers, and neither is a 3. = $\frac{20}{36} = \frac{5}{9}$

17. Out of a group of 120 students, 85 had been to Carowinds and 50 had been to Busch Gardens. 25 had been to both parks. Make a Venn Diagram for this.

b. How many students have been to neither park? 10

16. Suppose you roll a pair of dice. Find the probability that: Both dice show different numbers, and neither is a3.

Die	1	2	3	4	5	6
1	(1, 1)	(1, 2)	(1, 3)	(1, 4)	(1, 5)	(1, 6)
2	(2, 1)	(2, 2)	(2, 3)	(2, 4)	(2, 5)	(2, 6)
3	(3, 1)	(3, 2)	(3, 3)	(3, 4)	(3, 5)	(3, 6)
4	(4, 1)	(4, 2)	(4, 3)	(4, 4)	(4, 5)	(4, 6)
5	(5,1)	(5, 2)	(5, 3)	(5, 4)	(5, 5)	(5, 6)
6	(6, 1)	(6, 2)	(6, 3)	(6, 4)	(6, 5)	(6, 6)

- 18. How many possible ways are there to arrange all the letters in the word SENIORS? 2520 $\frac{7!}{2520}$
- I am trying to recall my friend's 7 digit cell phone number and I know the first digit is a 4, and the last three digits are 123. How many phone numbers are there that meet these requirements? 1, 00 0

1.10.10.10.1.1.1 = 1,000

20. A bank plans to assign an identification code to each account. Each code will have 2 digits that can't be the same and then 2 letters. How many different account numbers can be formed? <u>60,84</u>0

21. Draw a Venn Diagram and shade the appropriate area for $A \cap B \cap C^{C}$. $10 \cdot 9 \cdot 26 \cdot 26 = 60,840$

HW Day 5 Tonight's HW = Packet p. 7-8 (this material is on Quiz 2)

Extra Practice: Hint - a Venn diagram can help. Given U = {1, 2, 3, ...9} and

- A = {x | x is the odd integers from 1 to 9 } 2. Write A^c using roster notation.
- 3. If $B = \{x \mid x \text{ is multiples of 3}\}$, what is A U B?
- 4. $4 \in A$. True or False. (write the full word)

5. $U \subseteq A$. True or False. (write the full word)

Extra Practice: ANSWERS Hint - a Venn diagram can help.

Given U = {1, 2, 3, ...9} and A = {x | x is the odd integers from 1 to 9 } 2. Write A^c using roster notation. A^c = { 2, 4, 6, 8 }

3. If B = {x | x is multiples of 3}, what is A U B? A U B = { 1, 3, 5, 6, 7, 9 }

4. $4 \in A$. True or False. (write the full word) False!

5. $U \subseteq A$. True or False. (write the full word) False!

Quiz Time!

After the Quiz, work on Packet p. 7–8