Unit 5
 Day 5

Derivatives Quiz Day

Warm Up (Quiz Day)

1) Find the equation of the line tangent to

$$
y=2 x^{3}+4 x^{2}+x \text { at } x=2
$$

2) Use the limit definition to find the derivative of $f(x)=\frac{2}{x-3}$

Warm Up (Quiz Day) ANSWERS

1) Find the equation of the line tangent to

$$
\begin{array}{rl}
y=2 x^{3}+4 x^{2}+x \text { at } x=2 & y-34=41(x-2) \\
& y=41 x-48
\end{array}
$$

2) Use the limit definition to find the derivative of $f(x)=\frac{2}{x-3}$

$$
f^{\prime}(x)=\frac{-2}{x^{2}-6 x+9}
$$

Homework Questions?!

Tonight's Homework

- MATHO Packet p. 6 Odds
- Study formulas!

Unit 5

Derivatives

Practice: (Quiz Day)

1. Using the limits definition of derivatives, find the derivative of $g(x)$ given below:
Simplify your answer. $g(x)=\sqrt{x-3}$

Practice: (Quiz Day) ANSWERS

1. Using the limits definition of derivatives, find the derivative of $\mathrm{g}(\mathrm{x})$ given below:
Simplify your answer. $g(x)=\sqrt{x-3}$

$$
g^{\prime}(x)=\frac{1}{2 \sqrt{x-3}}
$$

Find the derivative using the power rule. Write your answer with positive, whole exponents or radicals.

$$
f(x)=4 x^{4}-5 x+2 \sqrt{x}-3
$$

$$
f^{\prime}(x)=16 x^{3}-5+\frac{1}{\sqrt{x}}
$$

Find the derivative using the power rule. Write answers with positive, whole exponents or radicals.

$$
f(x)=-\frac{3}{x^{7}}+\frac{2}{x^{4}}+\sqrt[3]{x^{7}}
$$

$$
f^{\prime}(x)=\frac{21}{x^{8}}-\frac{8}{x^{5}}+\frac{7 \sqrt[3]{x^{4}}}{3}
$$

Practice: (Quiz Day)

Find the equation of the line tangent to

$$
y=-4 x^{2}-6 x+2 \text { at } x=3
$$

$$
\begin{aligned}
& y+52=-30(x-3) \\
& y=-30 x+38
\end{aligned}
$$

Find the slope of the function $y=-x^{2}-12 \sqrt{x}-5$ at $x=9$.

$$
m=-20
$$

Find the derivative using the power rule.

$$
g(x)=\frac{1}{2} x^{4}+3 x^{\frac{5}{3}}+2 x
$$

$$
g^{\prime}(x)=-2 x^{3}+5 x^{\frac{2}{3}}+2
$$

Find the equation of the line tangent to $y=x^{3} \quad 3 x^{2}+2$ point at $(3,2)$.

$$
\begin{aligned}
& y-2=9(x-3) \\
& \text { or } y=9 x-25
\end{aligned}
$$

What is the limit definition of a derivative?

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Find the derivative using the limit definition of derivatives.

$$
f(x)=2 x
$$

$$
f^{\prime}(x)=2
$$

Find the derivative of the function.

Find the derivative using the limit definition of derivatives.

$$
g(x)=x^{2} \quad 5 x+6
$$

$$
g^{\prime}(x)=2 x-5
$$

Find the slope intercept equation of the tangent line of when $x=2$

$$
g(x)=5 x^{2}-3 x+7
$$

$$
y=17 x-13
$$

Find the derivative using the limit definition of derivatives.

$$
h(x)=\sqrt{2+x}
$$

$$
h^{\prime}(x)=\frac{1}{2 \sqrt{x+2}}
$$

Find the equation of the line tangent to $y=x^{3} \quad 2 x^{2}+2$ point at $(2,2)$.

$$
\begin{aligned}
& y-2=4(x-2) \\
& \text { or } y=4 x-6
\end{aligned}
$$

Find the derivative using the limit definition of derivatives.

$$
h(x)=\frac{2}{x+3}
$$

$$
h^{\prime}(x)=\frac{-2}{x^{2}+6 x+9}=\frac{-2}{(x+3)^{2}}
$$

Find the derivative using the power rule.

$$
f(x)=x^{\frac{2}{3}}
$$

$$
f^{\prime}(x)=\frac{2}{3 x^{\frac{1}{3}}} \text { OR } \frac{2}{3 \sqrt[3]{x}}
$$

Find the derivative of the function $y=x^{3}+3 x^{2}+3$ at $x=-1$

$$
f^{\prime}(x)=9
$$

MATHO

Tonight's Homework

- MATHO Packet p. 6 Odds
- Study formulas!

