Unit 5 Day 4

Derivatives Practice and Review

Warm Up: (Practice Day)

1. Using the limit definition of derivatives, find the derivative of $f(x)=\sqrt{x+11}$.
2. Find the derivative of $g(x)$ using the Power Rule. Express your answer

Phones in
pockets! We're looking at midterms today. (-) with positive whole exponents and radicals.

$$
g(x)=\frac{2}{x^{4}}+6 \sqrt{x}-x
$$

3. Find the equation of the tangent line to

$$
y=-x^{3}+13 x^{2}-56 x+83 \text { at } x=3
$$

Write the line in slope intercept form.

Warm Up: (Review Day)

1. Using the limits definition of derivatives, find the derivative of $f(x)$ given below: Simplify your answer. $f(x)=\sqrt{x+11}$

Warm Up: (Review Day)

2. Find the derivative of $g(x)$ using the Power Rule. Express your answer with positive whole exponents and radicals.

$$
g(x)=\frac{2}{x^{4}}+6 \sqrt{x}-x
$$

3. Find the equation of the tangent line to
$y=-x^{3}+13 x^{2}-56 x+83$ at $x=3$. Write the line in slope intercept form.

Warm Up: ANSWERS

1. Using the limits definition of derivatives, find the derivative of: $f(x)=\sqrt{x+11}$
Simplify your answer.

$$
f^{\prime}(x)=\frac{1}{2 \sqrt{x+11}}
$$

Warm Up: ANSWERS

2. Find the derivative of $g(x)$ using the Power Rule. Express your answer with positive whole exponents and radicals.

$$
g(x)=\frac{2}{x^{4}}+6 \sqrt{x}-x \quad g^{\prime}(x)=-\frac{8}{x^{5}}+\frac{3}{\sqrt{x}}-1
$$

3. Find the equation of the tangent line to
$y=-x^{3}+13 x^{2}-56 x+83$ at $x=3$. Write the
line in slope intercept form.

$$
y-5=-5(x-3) \quad y=-5 x+20
$$

Homework Questions?!

Tonight’s Homework

- Quiz Review sheet
-> Complete on Separate Paper
- Finish MATHO
(Packet p. 6)
- Study for Quiz!

MATHO

Practice: (Review Day)

1. Using the limits definition of derivatives, find the derivative of $f(x)$ given below: Simplify your answer. $f(x)=\frac{2}{x 4}$

Practice:

(Review Day) ANSWERS

1. Using the limits definition of derivatives, find the derivative of $f(x)$ given below.
Simplify your answer.

$$
f(x)=\frac{2}{x 4}
$$

$$
f^{\prime}(x)=\frac{-2}{x^{2}-8 x+16}
$$

Warm-Up (Quiz Day)

a) Find the equation of the line tangent to

$$
y=2 x^{3}+4 x^{2}+x \text { at } x=2
$$

b) Find the equation of the line tangent to

$$
y=-4 x^{2}-6 x+2 \text { at } x=3
$$

c) Use the limit definition to find the derivative of $f(x)=\frac{2}{x-3}$ and $g(x)=\sqrt{x-3}$

Warm Up (Quiz Day) ANSWERS

a) Find the equation of the line tangent to

$$
\begin{aligned}
y=2 x^{3}+4 x^{2}+x \text { at } x=2 \quad & y-34=41(x-2) \\
& y=41 x-48
\end{aligned}
$$

b) Find the equation of the line tangent to

$$
\begin{gathered}
y=-4 x^{2}-6 x+2 \text { at } x=3 \quad \begin{array}{c}
y+52=-30(x-3) \\
y=-30 x+38
\end{array}
\end{gathered}
$$

c) Use the limit definition to find the

$$
\begin{aligned}
& \text { derivative of } f(x)=\frac{2}{x-3} \quad \text { and } \quad g(x)=\sqrt{x-3} \\
& \qquad f^{\prime}(x)=\frac{-2}{x^{2}-6 x+9} \quad g^{\prime}(x)=\frac{1}{2 \sqrt{x-3}}
\end{aligned}
$$

Unit 5

Derivatives

What is the limit definition of a derivative?

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Find the derivative using the limit definition of derivatives.

$$
f(x)=2 x
$$

$$
f^{\prime}(x)=2
$$

Find the derivative using the power rule. Write your answer with positive, whole exponents or radicals.

$$
f(x)=4 x^{4}-5 x+2 \sqrt{x}-3
$$

$$
f^{\prime}(x)=16 x^{3}-5+\frac{1}{\sqrt{x}}
$$

Find the slope of the function $y=-x^{2}-12 \sqrt{x}-5$ at $x=9$.

$$
m=-20
$$

Find the derivative of the function.

Find the derivative using the limit definition of derivatives.

$$
g(x)=x^{2} \quad 5 x+6
$$

$$
g^{\prime}(x)=2 x-5
$$

Find the derivative using the power rule. Write answers with positive, whole exponents or radicals.

$$
f(x)=-\frac{4}{x^{5}}+\frac{2}{x^{3}}+\sqrt[3]{x^{5}}
$$

$$
f^{\prime}(x)=\frac{20}{x^{6}}-\frac{6}{x^{4}}+\frac{5 \sqrt[3]{x^{2}}}{3}
$$

Find the equation of the line tangent to $y=x^{3} \quad 3 x^{2}+2$ point at $(3,2)$.

$$
\begin{aligned}
& y-2=9(x-3) \\
& \text { or } y=9 x-25
\end{aligned}
$$

Find the slope intercept equation of the tangent line of when $x=2$

$$
g(x)=5 x^{2}-3 x+7
$$

$$
y=17 x-13
$$

Find the derivative using the limit definition of derivatives.

$$
h(x)=\sqrt{2+x}
$$

$$
h^{\prime}(x)=\frac{1}{2 \sqrt{x+2}}
$$

Find the equation of the line tangent to $y=x^{3} \quad 2 x^{2}+2$ point at $(2,2)$.

$$
\begin{aligned}
& y-2=4(x-2) \\
& \text { or } y=4 x-6
\end{aligned}
$$

Find the derivative using the limit definition of derivatives.

$$
h(x)=\frac{2}{x+3}
$$

$$
h^{\prime}(x)=\frac{-2}{x^{2}+6 x+9}=\frac{-2}{(x+3)^{2}}
$$

Find the derivative using the power rule.

$$
f(x)=x^{\frac{2}{3}}
$$

$$
f^{\prime}(x)=\frac{2}{3 \sqrt[3]{x}}
$$

Find the derivative of the function $y=x^{3}+3 x^{2}+3$ at $x=-1$

$$
f^{\prime}(x)=9
$$

Find the derivative using the power rule.
Express your solution with positive whole exponents and radicals.

$$
g(x)=\frac{1}{2} x^{4}+3 x^{\frac{5}{3}}+2 x
$$

$$
g^{\prime}(x)=-2 x^{3}+5 \sqrt[3]{x^{2}}+2
$$

MATHO

Questions on Packet p. 6

Homework

- Finish MATHO Packet p. 6
- Quiz Review sheet - Study for Quiz!

