ICM ~ Unit 4 ~ Day 4

Range & Practice

Warm Up ~ Day 4

1. Find the domain, range, x-intercepts, and y-intercepts, and end behavior using limit notation.

$$f(x) = \sqrt{4x^2 - 4x - 15}$$

2. Find the domain, x & y intercepts, and label any discontinuities:

$$h(x) = \frac{\sqrt{x+15}}{x-3}$$

Warm Up ~ Day 4 ANSWERS

1. Find the domain, range, x-intercepts, and y-intercepts and end behavior using limit notation.

$$f(x) = \sqrt{4x^2 - 4x - 15} = \sqrt{(2x + 3)(2x - 5)}$$

x-int: (-3/2, 0) & (5/2, 0) y-int: none
Domain: (-\infty, -3/2] \cup [5/2, \infty) Range: [0, \infty)
$$\lim_{x \to \infty} f(x) = \infty \qquad \lim_{x \to -\infty} f(x) = \infty$$

2. Find the domain, x & y intercepts, and label any discontinuities:

$$h(x) = \frac{\sqrt{x+15}}{x-3} \qquad \begin{array}{l} \text{Domain}: [-15,3) \cup (3,\infty) \\ x - \text{int}: (-15,0) \\ y - \text{int}: (0, -\frac{\sqrt{15}}{3}) \end{array} \qquad \begin{array}{l} \text{Nonremovable} \\ \text{Discontinuity} \\ \text{(Vertical} \\ \text{Asymptote} \\ \text{at x = 3)} \end{array}$$

Day 4 Homework Assignment:

Quiz 1 Review and Handout Extra Practice Unit 3 ICM - both are on the website

Announcements

Lunit 3 Quiz on next class meeting day!

Notes Day 4: Range and Practice

A Graphical Approach

Notes: Finding the Range of a Function

- Use numeric, algebraic and graphical approaches simultaneously.
- Keep in mind we are finding ALL y-coordinates of points on the graph.
- Write the range of the following functions in interval notation.

$$f(x)=\sqrt{3x-12}$$

$$g(x) = \frac{x^2 - 9}{x^2 - x - 1}$$

$$h(x)=\frac{\sqrt{x+1}}{x-4}$$

Notes: Finding the Range of a Function

- Use numeric, algebraic and graphical approaches simultaneously.
- Keep in mind we are finding ALL y-coordinates of points on the graph.
- Write the range of the following functions in interval notation.

$$f(x)=\sqrt{3x-12}$$

Range: $[0,\infty)$

Horizonta

Asymptotes?

 $g(x) = \frac{x^2 - 9}{x^2 - x - 12}$

Range: $(-\infty, 6/7) \cup (6/7, 1) \cup (1, \infty)$

$$h(x) = \frac{\sqrt{x+1}}{x-4}$$

Range: $(-\infty,\infty)$

Summary

Domain:

Consider the **vertical asymptotes** and the x-value of the **hole**

Make sure values under the radical are positive

Range:

Consider the **horizontal asymptotes** and the y-value of the **hole AND intercepts**, **if they exist**

<u>x-intercept:</u>

Set **y** = **0** and solve for **x**.

<u>y-intercept:</u>

Set **x** = **0** and solve for **y**.

Finding the Range of a Function

- Use numeric, algebraic and graphical approaches simultaneously.
- Keep in mind we are finding ALL y-coordinates of points on the graph.
- Write the range of the following functions in interval notation.

$$f(x) = \sqrt{2x + 7}$$

$$g(x) = \frac{\sigma}{2x + 12}$$
Fry:
$$m(x) = \frac{\sqrt{x}}{x - 9}$$

$$m(x) = \frac{\sqrt{x}}{x - 9}$$
Horizontal
Asymptotes:
???

Finding the Range of a Function

- Use numeric, algebraic and graphical approaches simultaneously.
- Keep in mind we are finding ALL y-coordinates of points on the graph.
- Write the range of the following functions in interval notation.

$$f(x) = \sqrt{2x+7}$$

YouRange:
$$[0, \infty)$$
Try!

Horizonta

Asymptotes?

$$g(x)=\frac{8}{2x+12}$$

Range: $(-\infty, 0) \cup (0, \infty)$

$$m(x)=\frac{\sqrt{x}}{x-9}$$

Range: $(-\infty,\infty)$

Practice

Find

$$g(x) = \frac{-8x - 48}{2x^2 + 5x - 42}$$

- Domain
- Hole(s) and Asymptote(s)
- x & y intercepts
- End Behavior using limits
- Range
- Graph all key features, plotting at least 3 exact points per section of the curve.

Practice!

$$24.) g(x) = \frac{x}{x-2}$$

11.)
$$f(x) = \frac{x-1}{(x+3)(x-1)}$$

Find the... -Domain -x & y intercepts -End Behavior using limits -Range

21.) $g(x) = \frac{3}{x} + 1$

$$23.) f(x) = \frac{|x-1|}{x}$$

Textbook: p.98

 $24.) g(x) = \frac{x}{x-2}$

and mental and a string mental	A CONTRACT OF A		
	Textbook: p.98 24.) $g(x) = \frac{x}{x-2}$	Find the -Domain -x & y intercepts -End Behavior using limits -Range	
and the second s	11.) $f(x) = \frac{x-x}{(x+3)(x+3)(x+3)(x+3)(x+3)(x+3)(x+3)(x+3)$	$\frac{1}{x-1}$	
Name and a second secon			

11.)
$$f(x) = \frac{x-1}{(x+3)(x-1)}$$

Find the... -Domain -x & y intercepts -End Behavior using limits -Range

21.)
$$g(x) = \frac{3}{x} + 1$$

Find the... -Domain -x & y intercepts -End Behavior using limits -Range

23.)
$$f(x) = \frac{|x-1|}{x}$$

$$24.) g(x) = \frac{x}{x-2}$$

 $\lim_{x\to\infty}g(x)=1$

 $\lim_{x\to\infty}g(x)=1$

Domain:
$$(-\infty, 2) \cup (2, \infty)$$

Range: $(-\infty, 1) \cup (1, \infty)$
 $x - \text{int}: (0, 0)$
 $y - \text{int}: (0, 0)$

Find the... -Domain -x & y intercepts -End Behavior using limits -Range

11.)
$$f(x) = \frac{x-1}{(x+3)(x-1)}$$

Domain:
$$(-\infty, -3) \cup (-3, 1) \cup (1, \infty)$$

Range: $(-\infty, 0) \cup (0, \frac{1}{4}) \cup (\frac{1}{4}, \infty)$

$$\lim_{x \to \infty} f(x) = 0$$
$$\lim_{x \to -\infty} f(x) = 0$$

$$x - \text{int}: none$$
$$y - \text{int}: (0, \frac{1}{3})$$
$$Hole: (1, \frac{1}{4})$$

21.)
$$g(x) = \frac{3}{x} + 1$$

$$\lim_{x \to \infty} g(x) = 1$$

$$\lim_{x \to -\infty} g(x) = 1$$

$$\lim_{x \to -\infty} g(x) = 1$$

$$\frac{x - \text{int} : (-3, 0)}{y - \text{int} : none}$$

Find the... -Domain -x & y intercepts -End Behavior using limits -Range

23.) $f(x) = \frac{|x-1|}{x}$ $\lim_{x \to \infty} f(x) = 1$ $\lim_{x \to -\infty} f(x) = -1$ $\lim_{x \to -\infty} f(x) = -1$

HW:

Quiz #1 Review and Handout Extra Practice Unit 3 ICM - on website

Quiz on next class meeting day!