Basic Differentiation Rules Day 3

Warm Up

- Rewrite using rational exponents.

$$
\begin{array}{ll}
\text { 1. } \frac{-2}{x} & 2 \cdot \sqrt{x-5} \\
\text { 3. } \sqrt[3]{8+4 x} & \text { 4. } \frac{5}{\sqrt[4]{x^{3}}}
\end{array}
$$

-5. Find the slope intercept equation of the line parallel to $y=3 x+1$ through the point $(4,5)$.

- 6. Use the limit definition to find the derivative of: $g(x)=\sqrt{3 x}$
-7. The derivative of a function is the same thing as
(HINT: see Day 1 Notes)

Warm Up ANSWERS

- Rewrite using rational exponents.

$$
\begin{array}{lll}
\text { 1. } \frac{-2}{x}-2 x^{-1} & \text { 2. } \sqrt{x-5} & (x- \\
\text { 3. } \sqrt[3]{8+4 x} & (8+4 x)^{\frac{1}{3}} & \text { 4. } \frac{5}{\sqrt[4]{x^{3}}}
\end{array}
$$

-5. Find the slope intercept equation of the line parallel to $\mathrm{y}=3 \mathrm{x}+1$ through the point $(4,5)$.
point-slope: $y-5=3(x-4) \quad$ Slope - int : $y=3 x-7$

- 6 . Use the limit definition to
find the derivative of: $g(x)=\sqrt{3 x}$

- 7. The derivative of a function is the same thing as the SLOPE of a function at a point.

HW Questions????》

Notes Day 3 Basic Differentiation Rules

Intro- Do you see the pattern?

$$
\begin{array}{cl}
f(x)=7 & f^{\prime}(x)=0 \\
g(x)=x^{3} & g^{\prime}(x)=3 x^{2} \\
h(x)=2 x^{4} & h^{\prime}(x)=8 x^{3}
\end{array}
$$

$$
f(x)=-3 x^{5}-2 x^{3}
$$

$$
f^{\prime}(x)=-15 x^{4}-6 x^{2}
$$

The Power Rule

- If n is a rational number, then the function $f(x)=x^{n}$ is differentiable and

$$
\begin{array}{r}
\frac{d}{d x}\left[x^{n}\right]=n x^{n-1} \\
E x: \quad f(x)=5 x^{3} \\
\frac{d}{d x} f(x)=15 x^{2}
\end{array}
$$

Differentiable means you can take the derivative!

The Constant Rule

- The derivative of a constant function is 0 . That is, if \boldsymbol{c} is a real number, then

$$
\begin{array}{r}
\frac{d}{d x}[c]=0 \\
f^{\prime}(x)=0
\end{array}
$$

- What type of lines do constants make?

Constants are horizontal lines - and their slope is zero. Remember, derivatives come from slope. :)

Examples

Write answers with only positive whole exponents and radicals!

- Find each derivative using the power rule.

$$
\begin{array}{ll}
\text { 1. } f(x)=-4 x^{2} & \text { 2. } f(x)=3 x^{6}+7 \\
\text { 3. } f(x)=\frac{2}{x^{2}} & \text { 4. } f(x)=-\frac{7}{x^{3}} \\
\text { 5. } g(x)=3 \sqrt{x} & \text { 6. } f(x)=2 \sqrt[3]{x^{4}}
\end{array}
$$

Examples ANSWERS

Write answers with only positive whole exponents and radicals!

- Find each derivative using the power rule.

$$
\begin{array}{rlrl}
\text { 1. } f(x)=-4 x^{2}=-8 x & & \text { 2. } f(x)=3 x^{6} & +7 \\
& =18 x^{5} \\
\text { 3. } f(x)=\frac{2}{x^{2}}=\frac{-4}{x^{3}} & & \text { 4. } f(x)=-\frac{7}{x^{3}} & =\frac{21}{x^{4}} \\
\begin{array}{rlrl}
\text { 5. } g(x)=3 \sqrt{x} & \frac{3}{2 \sqrt{x}} & & 6 \cdot f(x)=2 \sqrt[3]{x^{4}} \\
& =\frac{8 x^{\frac{1}{3}}}{3}
\end{array}
\end{array}
$$

The Sum and Difference Rules

- The sum (and difference) of two differentiable functions is differentiable and is the sum (or difference) of their derivatives.

$$
\begin{aligned}
& \frac{d}{d x}[f(x)+g(x)]=f^{\prime}(x)+g^{\prime}(x) \\
& \frac{d}{d x}[f(x)-g(x)]=f^{\prime}(x)-g^{\prime}(x)
\end{aligned}
$$

Find each Write answers with only positive whole exponents and radicals!

7. $f(x)=3 x^{4}-2 x^{3}$
8. $f(x)=x^{3}-4 x+5$
9. $f(x)=-\frac{x^{4}}{2}+3 x^{3}-2 x$
10. $f(x)=x^{4}-2 x^{3}+4 \sqrt{x}$

Write answers with only positive

Find each whole exponents and radicals! derivative ANSWERS:

$$
\begin{array}{rlrl}
\text { 7. } f(x)=3 x^{4}-2 x^{3} & \text { 8. } f(x) & =x^{3}-4 x+5 \\
=12 x^{3}-6 x^{2} & =3 x^{2}-4 \\
\text { 9. } f(x)=-\frac{x^{4}}{2}+3 x^{3}-2 x & \text { 10. } f(x)=x^{4}-2 x^{3}+4 \sqrt{x} \\
=-2 x^{3}+9 x^{2}-2 & & =4 x^{3}-6 x^{2}+\frac{2}{\sqrt{x}}
\end{array}
$$

What does the derivative tell us?

- The equation for the slope of the line tangent to the curve. \leftarrow Write this down!
- Is the slope of the line the same as we go across a curve?
- We can substitute in different x-values for our derivative equation to find the slope at specific points.

Know the difference!

- Question 1:

Slope of a graph at a specific point, c.
\rightarrow Find the derivative (difference quotient) then substitute in c for x and simplify.

- Question 2:

Finding a formula for the slope at any point on the graph \rightarrow Find the derivative

- Question 3:

Finding the equation of the tangent line for at a specific point on the graph \rightarrow Use

$$
y-y_{1}=\frac{d y}{d x}\left(x-x_{1}\right)
$$

Find the slope at a point

- Find the slope of the graph of $f(x)=x^{4}$ when:

$$
\begin{array}{l|l|l}
\begin{array}{l}
\text { a. } x=-1
\end{array} & \begin{array}{l}
\text { b. } x=0 \\
f^{\prime}(x)=
\end{array} & f^{\prime}(x)= \\
\text { b. } f^{\prime}(-1)= & f^{\prime}(x)= \\
\text { c. } f^{\prime}(1)= \\
& \begin{array}{r}
\text { Remember } \\
\text { a derivative } \\
\text { is slope! }
\end{array}
\end{array}
$$

Find the slope at a point ANSWERS

- Find the slope of the graph of $f(x)=x^{4}$ when:

$$
\begin{array}{l|l|l}
\text { a. } x=-1 & \text { b. } x=0 & \text { c. } x=1 \\
f^{\prime}(x)=4 x^{3} & f^{\prime}(x)=4 x^{3} & f^{\prime}(x)=4 x^{3} \\
\text { a. } f^{\prime}(-1)=-4 & \text { b. } f^{\prime}(0)=0 & \text { c. } f^{\prime}(1)=4
\end{array}
$$

Remember a derivative is slope!

Writing Equations of Tangent Lines Given $f(x)=3 x^{2}+5 x$. Write the equation of the tangent line at $x=2$.

- First, find $f^{\prime}(x)$.
- Then, find f'(2).
- In other words, the derivative of $f(x)$ is The slope of the tangent line at $x=2$ is
- Can you find the equation of the tangent line??
*Substitute the x-value into the original equation to find y !! You need ($\mathrm{x}_{1}, \mathrm{y}_{1}$) or ($\mathrm{x}_{1}, \mathrm{f}\left(\mathrm{x}_{1}\right)$)

Equations of Tangent Lines ANSWERS

 Given $f(x)=3 x^{2}+5 x$. Write the equation of the tangent line at $x=2$.- We could say $f^{\prime}(x)=6 x+5$.
- So we could say $f^{\prime}(2)=17$.
- In other words, the derivative of $f(x)$ is $6 x+5$. The slope of the tangent line at $x=2$ is 17 .
-Can you find the equation of the tangent line?? *Substitute the x -value into the $y-22=17(x-2)$ original equation to find y !! You need ($\mathrm{x}_{1}, \mathrm{y}_{1}$) or ($\mathrm{x}_{1}, \mathrm{f}\left(\mathrm{x}_{1}\right)$)

$$
y=17 x-12
$$

How to find equation of tangent line when not given a point:

1. Find the coordinate point. $\quad\left(x_{1}, y_{1}\right)$ Substitute the given x-value into the ORIGINAL function to find the y-value of the point
2. Find the slope of the line. $\quad \mathrm{m}=$ slope Take the derivative of the function. Then substitute the given x-value into the derivative to find the slope at that point.
3. Use point-slope formula with the slope and point that you found! $y-y_{1}=m\left(x-x_{1}\right)$ where your point is $\left(x_{1}, y_{1}\right)$ and your $m=$ slope

Find the equation of the tangent line to the graph of $f(x)=-2 x^{2}+9 x+1$ at $x=3$.

First, find the coordinate pair.
Next, find the derivative of the function.

$$
f(x)=-2 x^{2}+9 x+1
$$

Next, find the slope of the tangent line at $x=3$.

Finally, find the equation of the tangent line at the point (3, ___).

Find the equation of the tangent line to the graph of $f(x)=-2 x^{2}+9 x+1$ at $x=3$. ANSWERS

First, find the derivative of the function.

$$
\begin{aligned}
& \mathbf{f}(\mathrm{x})=-2 \mathrm{x}^{2}+9 \mathrm{x}+1 \\
& f^{\prime}(x)=-4 x+9
\end{aligned}
$$

Next, find the slope of the tangent line at $x=3$.

$$
f^{\prime}(3)=-4(3)+9 \quad m=-3
$$

Finally, find the equation of the tangent line at the point $(3,10) . \quad y-10=-3(x-3)$

$$
y=-3 x+19
$$

You Try: Equation of a Tangent Line

Ex. Find an equation of the tangent line to the graph of $f(x)=x^{2}$ when $x=-2$.

You Try: Equation of a Tangent Line ANSWERS

Ex. Find an equation of the tangent line to the graph of $f(x)=x^{2}$ when $x=-2$.

- $f^{\prime}(x)=2 x$

$$
m=-4
$$

*Substitute the x value into the original equation to find y!!

Write this down!

$$
f(-2)=4
$$

$$
y-4=-4(x+2)
$$

Remember to write an equation of a line we need slope and a point!

Homework: p.4-5 2) Have a great day!

Old slides up next
 Not used Fall '18

