Unit 2 Day 2 MATRICES

More MATRIX Applications Practice Matrix Multiplication Applications

- Systems of Equations with Matrices

Warm Up Day 2

1. A florist creates three special floral arrangements. One type uses three lilies. The second type uses two lilies and four carnations. The third uses two daisies and four carnations. Lilies cost $\$ 2.35$ each, carnations $\$ 0.95$ each, and daisies $\$ 1.45$ each.
a. Write a matrix N to represent the number of each type of flower in each arrangement.
b. Write a matrix C to represent the cost of each type of flower.
c. Use matrix operations to find a matrix representing the cost of each type of arrangement.
d. The florist has overstock. She decides to offer a 25% off sale. Use matrix operation(s) to determine the cost of each type of flower now.
2. Simplify. $\left[\begin{array}{cc}-3 & 2 a \\ a & 1 \\ 2 & 0\end{array}\right] \cdot\left[\begin{array}{ll}1 & a \\ 2 & 3\end{array}\right]$

Riddle:
Why was 6 afraid of 7?

Warm Up Answers

1. A florist creates three special floral arrangements. One type uses three lilies. The second type uses two lilies and four carnations. The third uses two daisies and four carnations. Lilies cost $\$ 2.35$ each, carnations $\$ 0.95$ each, and daisies $\$ 1.45$ each.
a. Write a matrix N to represent the number of each type of flower in each arrangement.
b. Write a matrix C to represent the cost of each type of flower.

$$
\operatorname{Cost}(\$)
$$

$$
C=C r\left[\begin{array}{l}
0.95 \\
D a \\
1.45
\end{array}\right]
$$

$N=$| Lil |
| :---: |
| $A 1$ |
| $A 1$ |
| $A 2$ |
| $A 3$ |\(\left[\begin{array}{lll}3 \& 0 \& 0

2 \& 4 \& 0

0 \& 4 \& 2\end{array}\right]\)
c. Use matrix operations to find a matrix representing the cost of each type of arrangement. Cost (\$)

Cost (\$)

$$
N C=A 2\left[\begin{array}{l}
A 1
\end{array}\left[\begin{array}{l}
3(2.35)+0(0.95)+0(1.45) \\
2(2.35)+4(0.95)+0(1.45) \\
0(2.35)+4(0.95)+2(1.45)
\end{array}\right]=A 2\left[\begin{array}{r}
7.05 \\
A 3
\end{array}\left[\begin{array}{l}
8.50 \\
6.70
\end{array}\right]_{3}\right.\right.
$$

Warm Up Answers

1. A florist creates three special floral arrangements. One type uses three lilies. The second type uses two lilies and four carnations. The third uses two daisies and four carnations. Lilies cost $\$ 2.35$ each, carnations $\$ 0.95$ each, and daisies $\$ 1.45$ each.
d. The florist has overstock. She decides to offer a 25% off sale. Use matrix operation(s) to determine the cost of each type of flower now.

$$
\begin{aligned}
& \text { Cost (\$) Sale Cost (\$) }
\end{aligned}
$$

Warm Up Answers

2. Simplify.

$$
\begin{aligned}
{\left[\begin{array}{cc}
-3 & 2 a \\
a & 1 \\
2 & 0
\end{array}\right] \cdot\left[\begin{array}{ll}
1 & a \\
2 & 3
\end{array}\right] } & =\left[\begin{array}{cc}
-3(1)+2 a(2) & -3 a+2 a(3) \\
a(1)+1(2) & a(a)+1(3) \\
2(1)+0(2) & 2(a)+0(3)
\end{array}\right] \\
& =\left[\begin{array}{cc}
-3+4 a & 3 a \\
a+2 & a^{2}+3 \\
2 & 2 a
\end{array}\right]
\end{aligned}
$$

Riddle:
Why was 6 afraid of 7? Because 7 ate $9(7,8,9)$

Questions About last night's HW?

- Packet p. 1 ALL
- Packet p. 2 \#1-2

Tonight's Homework

Mixed Matrix Applications Handout AND
Finish Packet p. 2

Before today's Notes

- START Day 2 Handout on Mixed Matrix Applications....try \#2 first! Let's make sure we're on the right track. ©

Unit 2 Day 2 NOTES

More MATRIX Applications: Solving Systems of Equations with Matrices

Ex 1: Setting up and Solving Matrix Equations

A linear system can be written as a matrix equation $A X=B$

We'll solve for matrix X to find x and $y . ~ \rightarrow$

Ex 1: Solving Matrix Equations

Suppose $a x=b$. How do you solve for x ?

We cannot divide matrices, but we can multiply by the inverse.
A^{-1} is the inverse of matrix A.

We'll use it to find X.

$$
\begin{gathered}
A X=B \\
\begin{array}{c}
A^{-1} A X=A^{-1} B \\
X=\underbrace{A^{-1} B} \\
\begin{array}{c}
\text { We can do this } \\
\text { in the calc. } \cdot:)
\end{array} \\
\text { Details on next slide } \rightarrow
\end{array}
\end{gathered}
$$

Ex 1: Solving Matrix Equations in calculator

$5 x-4 y=8$

$$
1 x+2 y=6
$$

Solve
In Calc, $2^{\text {nd }} \mathrm{x}^{-1}$ Edit \& enter matrices A and B

$$
\begin{gathered}
{\left[\begin{array}{cc}
5 & -4 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]} \\
\mathbf{A} \\
\mathbf{A}
\end{gathered} \underset{\mathbf{B}}{\left[\begin{array}{l}
8 \\
6
\end{array}\right]}\left[\begin{array}{l}
\mathbf{A}
\end{array}\right.
$$

Remember, $A X=B$

$$
X=\underbrace{A^{-1} B}
$$

On main screen of calc, do $2^{\text {nd }} \mathbf{x}^{\mathbf{- 1}}$ Enter (to get A)
$\mathbf{x}^{\mathbf{- 1}}$ (to get inverse ${ }^{\mathbf{- 1}}$ on A)
$2^{\text {nd }} \mathbf{x}^{\mathbf{- 1}} 2$ Enter (to get B)
$x=2.857, y=1.571$
$(2.857,1.571)$

Ex. 2 Solve using matrices

$$
\begin{array}{lcc}
2 x+3 y+z=-1 & 2 x+3 y+z=-1 & \mathrm{AX}=\mathrm{B} \\
3 x+3 y=1-z & 3 x+3 y+z=1 \\
2 x+z=-4 y-2 & 2 x+4 y+z=-2 & X=A^{-}
\end{array}
$$

First, line up the equations

$$
\begin{gathered}
{\left[\begin{array}{lll}
2 & 3 & 1 \\
3 & 3 & 1 \\
2 & 4 & 1
\end{array}\right]}
\end{gathered}\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
-1 \\
\mathbf{A} \\
\mathbf{A} \\
-2
\end{array}\right]
$$

We can do this in the calc. :)

$$
\begin{gathered}
x=2 \\
y=-1 \\
z=-2 \\
(2,-1,-2)
\end{gathered}
$$

You Try! Solve using matrices

Ex. $3 \quad 7 x+3 y=11$

$$
14 x-4 y=2
$$

Ex. $4 \quad 3 y+5 z=x-15$
$2 x+y=1$
$-9 x-8 y=4 z+12$

You Try! ANSWERS Solve using matrices

Ex. $3 \quad 7 x+3 y=11$

$$
14 x-4 y=2
$$

$$
\begin{aligned}
& x=5 / 7 \\
& y=2
\end{aligned}
$$

$$
(5 / 7,2)
$$

Ex. 4

$$
\begin{array}{lcl}
3 y+5 z=x-15 & -x+3 y+5 z=-15 & \\
2 x+y=1 & 2 x+y=1 \\
-9 x-8 y=4 z+12 & -9 x-8 y-4 z=12 & \\
& & y=-7 \\
& & \\
& & =2
\end{array}
$$

