Follow instructions on the following problems and show all of your work

1. The student council is selling flowers for mother's day. They bought 200 roses for $\$ 1.67$ each, Cost of 150 daffodils for $\$ 1.03$ each and 100 orchids for $\$ 2.59$ each. They sold the roses for $\$ 3.00$ each, the daffodils for $\$ 2.25$ each and the orchids for $\$ 4.50$ each.
a. Organize the data in two matrices, and use matrix multiplication Roses Daff Orc. to find the total amount spent on the flowers.

$$
N C=\text { Total spent }=\$ 747.50
$$

$$
N=\# o f\left[\begin{array}{lll}
200 & 150 & 100
\end{array}\right]
$$

Roses
Daff.
Orc. $\left[\begin{array}{l}1.67 \\ 1.03 \\ 2.59\end{array}\right]$
b. Write two matrices, and use matrix multiplication to find the total revenue the student council brought in for the flower sale.

$$
\mathrm{NR}=\text { Total revenue }=\$ 1387.50
$$

$$
R=\begin{array}{r}
\text { Roses } \\
\text { Daff. } \\
\text { Orc. }
\end{array}\left[\begin{array}{l}
3.00 \\
2.25 \\
4.50
\end{array}\right]
$$

c. Use matrix operations to find how much profit the student council made on the project.

$$
\text { Profit }=N R-N C=\$ 640.00
$$

2. A nut distributor wants to know the nutritional content of various mixtures of almonds, cashews, and pecans. Her supplier has provided the following nutrition information:

	Almonds	Cashews	Pecans
Protein (g/cup)	26.2	21	10.1
Carbs (g/cup)	40.2	44.8	14.3
Fat (g/cup)	71.9	63.5	82.8

Her first mixture, a protein blend, consists of 6 cups of almonds, 3 cups of cashews, and 1 cup of pecans. Her second mixture, a low fat mix, consists of 3 cups of almonds, 6 cups of cashews, and 1 cup of pecans. Her third mixture, a low carb mix consists of 3 cups of almonds, 1 cup of cashews, and 6 cups of pecans. Determine the amount of protein, carbs, and fats in a 1 cup serving of each of the mixtures.

Solution:

Almonds, Cashews and Pecans Protein, Low-Fat and Carb
Protein, Low-Fat and Carb

3. An outbreak of Chicken Pox hit the local public schools. Approximately 15% of the male and female juniors and $\mathbf{2 5 \%}$ of the male and female seniors are currently healthy, 35% of the male and female juniors and 30% of the male and female seniors are currently sick, and 50% of the male and female juniors and 45% of the male and female seniors are carriers of Chicken Pox.
There are 100 male juniors, 80 male seniors, 120 female juniors, and 100 female seniors.
Using two matrices and one matrix equation, find out how many males and how many females (don't need to divide by class) are healthy, sick, and carriers.

Solution:

$\left.\left.\begin{array}{cr}\text { Junior } & \text { Senior }\end{array} \begin{array}{rcc}\text { H } & \text { S } & \text { C } \\ \text { Male } \\ \text { Female }\end{array} \begin{array}{cc}100 & 80 \\ 120 & 100\end{array}\right] \times \begin{array}{ccc}\text { Junior }\end{array} \begin{array}{ccc}.15 & .35 & .50 \\ \text { Senior } \\ .25 & .30 & .45\end{array}\right]=\left[\begin{array}{ccc}\text { H } & \text { S } & \text { C } \\ {\left[\begin{array}{ccc}35 & 59 & 86 \\ 43 & 72 & 105\end{array}\right]} & \begin{array}{l}\text { Male } \\ \text { Female }\end{array}\end{array}\right.$

So there will be 35 healthy males, 59 sick males, and 86 carrier males, 43 healthy females, 72 sick females, and 95 carrier females. Pretty clever!

[^0]
[^0]: \#1 came from http://militantgrammarian.com/DAY/LSandSTAT/1314/Matrices/Matrix\%20Multiplication\%20word\%20problems\%20with\%20key.docx
 \#2 and 3 came from http://www.shelovesmath.com/algebra/advanced-algebra/matrices-and-solving-systems-with-matrices/\#MultiplyingMatrices

