ICM ~Unit 4 ~ Day 2 (Extra Day for PSAT/Practice)

Section 1.2— Horizontal Asymptotes, \&
Domain and Discontinuities Practice

Warm Up

Find the domain, x \& y intercepts, and label any discontinuities (including if they are removable or non-removable).

1. $h(x)=\frac{\sqrt{25-x^{2}}}{x-4}$
2) $f(x)=\frac{x^{2}-4 x}{x^{3}+4 x^{2}-32 x}$

Warm Up ANSWERS

Find the domain, x \& y intercepts, and label any discontinuities (including if they are removable or non-removable). Domain: $[-5,4) \cup(4,5]$

Nonremovable Discontinuity
(Vertical
Asymptote at $x=4$)
2) $f(x)=\frac{x^{2}-4 x}{x^{3}+4 x^{2}-32 x} \quad \begin{aligned} & x \text {-int: none } \\ & y \text {-int: none (hole there) }\end{aligned}$

Hole (removable disc.) : $\left(0, \frac{1}{8}\right)$ and $\left(4, \frac{1}{12}\right)$
V.A. (non-removable disc.) $x=-8$

Homework Questions?

Tonight's Homework

Finish Rational Summary
\& 5 Factoring Problems from the Puzzle
More Rational Fncns Handout Evens

Homework

- Finish Rational Summary
\& 5 Factoring Problems from the Puzzle
- More Rational Fncns Handout Evens

Notes Day 2 (Extra Day)

Section 1.2—Horizontal Asymptote and
 Domain and Discontinuities Practice

Definition of Degree

- Degree of a polynomial in one variable: the value of the greatest exponent

Ex: $f(x)=4 x^{2}+9 x+8 \quad$ Degree: 2
Ex: $g(x)=-5 x^{3}+6 x^{2}+4 x \quad$ Degree: 3

Ex: $\quad h(x)=5 x^{2}+3 x^{4}+2 x \quad$ Degree: 4
Watch out...the polynomial may not be in order!!

- Degree can help us with determining the horizontal asymptote of rational functions...

Asymptote Lab Packet p. 4-5

Let's do one or two together!

Examine the table of values below. All of the

 following statements are true EXCEPT| x | y_{1} | y_{2} |
| :---: | :---: | :---: |
| -2.03 | -66.67 | -4.03 |
| -2.02 | -100 | -4.02 |
| -2.01 | -200 | -4.01 |
| -2 | ERROR | ERROR |
| -1.99 | 200 | -3.99 |
| -1.98 | 100 | -3.98 |
| -1.97 | 66.667 | -3.97 |
| $x=-2$ | Yo | |
| Asy | | |

Lab to learn more about this.
C. $x=-2$ is a removable discontinuity in y_{2}
D. $x=-2$ is a vertical asymptote in y_{2}

Looking at y_{2}, the y 's are in order, but $y=-4$ was skipped, so there is a Removable Discontinuity (Hole) at (-2, -4)

Horizontal Asymptotes

For horizontal asymptotes, think BOSTON for polynomials! Looking at the degree of top \& bottom...

$$
\text { Bottom }>\text { Top } \quad f(x)=\frac{2 x}{x^{2}+3 x} \quad \text { H.A. }: y=0
$$

$y=0$
Same = ratio

$$
g(x)=\frac{2 x^{3}}{5 x^{3}+4 x^{2}} \quad H . A .: y=\frac{2}{5}
$$

Top > Bottom
$\uparrow_{\mathrm{N}}^{\mathrm{O}}$ No HA.

$$
h(x)=\frac{5 x^{2}}{7 x+3} \quad \text { No H.A. }
$$

You Try! What is the EQUATION of the horizontal asymptote for the following functions?

$$
f(x)=\frac{3 x^{2}+9}{7 x+4 x^{2}+11}
$$

$$
g(x)=\frac{4 x^{3}}{5 x^{2}+9}
$$

$$
h(x)=\frac{7 x+15}{2 x^{2}}
$$

You Try! What is the EQUATION of the horizontal asymptote for the following functions?

$$
\begin{aligned}
& \begin{array}{l}
f(x)=\frac{3 x^{2}+9}{7 x+4 x^{2}+11} \\
g(x)=\frac{4 x^{3}}{5 x^{2}+9}
\end{array} \\
& H \text {.A. }: y=3 / 4 \\
& \text { Bottom > Top } \\
& y=0 \\
& \text { Same = ratio } \\
& \text { Top > Bottom } \\
& \boldsymbol{\uparrow}_{\mathrm{N}} \text { No HA. } \\
& \text { H.A. : none }
\end{aligned}
$$

$$
h(x)=\frac{7 x+15}{2 x^{2}} \quad \text { H.A.: } y=0
$$

Rational Summary

Let's Summarize some rules
and steps for discontinuities of Rational Functions

Practice - Finish for part of Homework

- Rational Summary \&
- More Rational Fncns Handout

Domain Practice

Around the Room Activity (if time allows)

You Try: True or False

1) The graph of function f is defined as the set of all points $(x, f(x))$ where x is in the domain of f. Justify your answer.
2) If a function is not continuous, then the domain cannot be all real numbers.

True or False ANSWERS

1) The graph of function f is defined as the set of all points $(x, f(x))$ where x is in the domain of f. Justify your answer.

$$
\begin{aligned}
& \text { True! This is the definition } \\
& \text { of a function. }
\end{aligned}
$$

2) If a function is not continuous, then the domain cannot be all real numbers.

False! It could be a piecewise function.

Is this continuous?

State whether the scenario is continuous or discontinuous.

- A) Outdoor temperature as a function of time. Continuous
- B) Number of soft drinks sold at a ballpark as a function of outdoor temp.

Discontinuous
-C) Your hair length as a function of days in a year Continuous

Homework

- Finish Rational Summary
\& 5 Factoring Problems from the Puzzle
- More Rational Fncns Handout Evens

