ICM ~Unit 4 ~ Day 2 (Extra Day for PSAT/Practice)

Section 1.2— Horizontal Asymptotes, & Domain and Discontinuities Practice

Warm Up

Find the domain, x & y intercepts, and label any discontinuities (including if they are removable or non-removable).

$$1. h(x) = \frac{\sqrt{25 - x^2}}{x - 4}$$

2)
$$f(x) = \frac{x^2 - 4x}{x^3 + 4x^2 - 32x}$$

Warm Up ANSWERS

Find the domain, x & y intercepts, and label any discontinuities (including if they are removable or non-removable). Domain: $[-5,4) \cup (4,5]$ Nonremovable 1. $h(x) = \frac{\sqrt{25 - x^2}}{x - 4} \frac{x - \text{int} : (-5, 0) \& (5, 0)}{y - \text{int} : (0, -\frac{5}{4})}$ Discontinuity (Vertical Asymptote at x = 4) 2) $f(x) = \frac{x^2 - 4x}{x^3 + 4x^2 - 32x}$ x-int: none y-int: none (hole there) Hole (removable disc.): $(0, \frac{1}{2})$ and $(4, \frac{1}{12})$ V.A. $(non - removable \ disc.) \ x = -8$

Homework Questions?

Tonight's Homework Finish Rational Summary & 5 Factoring Problems from the Puzzle More Rational Fncns Handout **Evens**

Homework

- Finish Rational Summary
- & 5 Factoring Problems from the Puzzle
- More Rational Fncns Handout Evens

Notes Day 2 (Extra Day)

Section 1.2—Horizontal Asymptote and Domain and Discontinuities Practice

Definition of Degree

• Degree of a polynomial in one variable: the value of the greatest exponent

Ex:
$$f(x) = 4x^2 + 9x + 8$$
 Degree: 2
Ex: $g(x) = -5x^3 + 6x^2 + 4x$ Degree: 3

Ex: $h(x) = 5x^2 + 3x^4 + 2x$ Degree: 4 Watch out...the polynomial may not be in order!!

• Degree can help us with determining the horizontal asymptote of rational functions...

Asymptote Lab Packet p. 4-5

Let's do one or two together!

Examine the table of values below. All of the following statements are true EXCEPT

x	\mathcal{Y}_1	\mathcal{Y}_2	
-2.03	-66.67	-4.03	
-2.02	-100	-4.02	
-2.01	-200	-4.01	
-2	ERROR	ERROR	
-1.99	200	-3.99	
-1.98	100	-3.98	You'll do an
-1.97	66.667	-3.97	Asymptote
x = -2			Asymptote
A. $x = -2$ is a vertical asymptote in y_1 B. $x = -2$ is an infinite discontinuity in y_1			- Lab to learn more about this.
C. $x = -2$ is a removable discontinuity in y_2			
D. $x = -2$ is a vertical asymptote in y_2			

Looking at y_2 , the y's are in order, but y = -4 was skipped, so there is a Removable Discontinuity (Hole) at (-2, -4)

Horizontal Asymptotes

For horizontal asymptotes, think BOSTON for **polynomials**! Looking at the degree of top & bottom...

Bottom > Top
$$f(x) = \frac{2x}{x^2 + 3x}$$
 H.A.: $y = 0$
 $y=0$
Same = ratio $g(x) = \frac{2x^3}{5x^3 + 4x^2}$ H.A.: $y = \frac{2}{5}$
Top > Bottom
 $\uparrow 0$ No HA. $h(x) = \frac{5x^2}{7x + 3}$ No H.A.

You Try! What is the EQUATION of the horizontal asymptote for the following functions?

$$f(x) = \frac{3x^2 + 9}{7x + 4x^2 + 11}$$

Bottom > Top y=0 Same = ratio Top > Bottom ↑ 0 No HA. N

$$g(x) = \frac{4x^3}{5x^2 + 9}$$

$$h(x) = \frac{7x + 15}{2x^2}$$

You Try! What is the EQUATION of the horizontal asymptote for the following functions?

$$f(x) = \frac{3x^2 + 9}{7x + 4x^2 + 11}$$

$$H.A.: y = \frac{3}{4}$$

$$y=0$$
Same = ratio
Top > Bottom
$$\uparrow 0$$
No HA.

$$g(x) = \frac{4x^3}{5x^2 + 9}$$

H.*A*. : *none*

Bottom > Top

$$h(x) = \frac{7x + 15}{2x^2}$$
 H.A.: $y = 0$

Rational Summary

Let's Summarize some rules and steps for discontinuities of Rational Functions

Practice – Finish for part of Homework

- Rational Summary &
- More Rational Fncns Handout

Domain Practice

Around the Room Activity (if time allows)

You Try: True or False

 The graph of function f is defined as the set of all points (x, f(x)) where x is in the domain of f. Justify your answer.

2) If a function is not continuous, then the domain cannot be all real numbers.

True or False ANSWERS

 The graph of function *f* is defined as the set of all points (*x*, *f*(*x*)) where *x* is in the domain of *f*. Justify your answer.

True! This is the definition of a function.

2) If a function is not continuous, then the domain cannot be all real numbers.

False! It could be a piecewise function.

Is this continuous?

State whether the scenario is continuous or discontinuous.

- A) Outdoor temperature as a function of time.
 Continuous
- B) Number of soft drinks sold at a ballpark as a function of outdoor temp.
 Discontinuous
- C) Your hair length as a function of days in a year

Continuous

Homework

- Finish Rational Summary
- & 5 Factoring Problems from the Puzzle
- More Rational Fncns Handout Evens