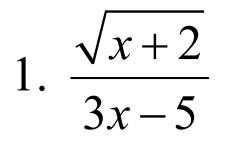
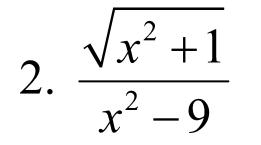

ICM ~ Unit 3 ~ Day 2

Section 1.2—Domain, Continuity, Discontinuities

Warm Up Day 2


Find the domain, x-intercepts and y-intercepts.


- 3. *Factor completely*. $6x^2 4x 16$
- 4. *Factor completely*. $8x^3 + 27$

Warm Up Day 2

Find the domain, x-intercepts and y-intercepts.

Domain: $[-2, \frac{5}{3}) \cup (\frac{5}{3}, \infty)$ x - int : (-2, 0) $y - \text{int} : (0, -\sqrt{2}/5)$

 $Domain: (-\infty, -3) \cup (-3, 3) \cup (3, \infty)$ x - int: none $y - \text{int}: (0, -\frac{1}{9})$

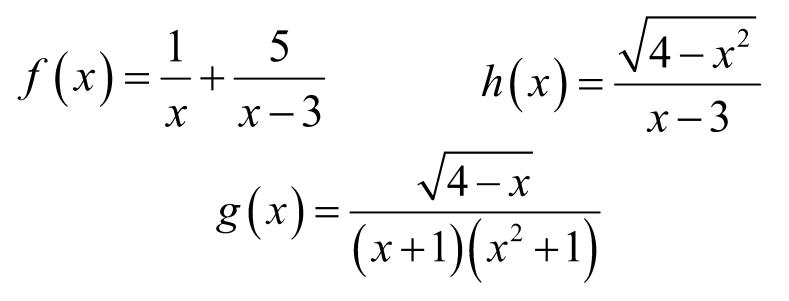
Warm Up Day 2

3. *Factor completely*. $6x^2 - 4x - 16$

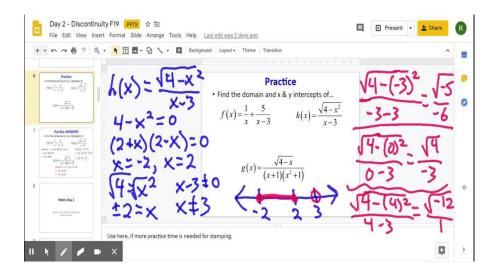
2(3x+4)(x-2)

4. Factor completely. $8x^3 + 27$

	Some PowerPoint features can't be di	splayed in Google Slides and will be dropped if you make changes View details	
Search the menus (Alt+/)	+ • • • • • • • • • • • •		~
$2 \frac{\text{Warm thy Day 2}}{\int t_{1}^{1} t_{1}^{2} t_{2}^{2} \cdots t_{2}^{2} \frac{\int f_{1}^{2} t_{1}^{2}}{\int t_{1}^{2} t_{2}^{2}} = 2 \frac{\int f_{1}^{2} t_{1}^{2}}{\int t_{1}^{2} t_{2}^{2}}$ A fact organist, th ² -ta-th. C face coupledy, th ² -27	6x ² -4x-16 2 (3x ² -2x-8)	Warm Up Day 2 3. Factor completely. $6x^2 - 4x - 16$	(x-2)]
$\begin{array}{c c} \hline & \\ \hline \\ \hline$	-24 -6×4 -2 -2	2(3x+4)(x-2) 4. Factor completely. $8x^3+27$	x-2)
4 Warm Up Day 2 3. Fairs completely. 67 - 61 - 16 - 3.01 + 40(x - 2 4. Fairs completely. 67 + 27 - (2x + 304x ² - 64 + 9)		(2x+3)(4x ² -6x+9)	
II K / /	Click to add speaker notes		۵


 $(2x+3)(4x^2-6x+9)$

Homework Questions?


Tonight's Homework Packet p. 2-3

Practice

• Find the domain and x & y intercepts of...

	Day 2 - Discontinuity F19 [PPTX] 🛧 🖬 iile Edit View Insert Format Slide Arrange Tools Help <u>Last edit was 2 days ago</u>	▶ Present ◄	2 Share	R
+ •	🗠 🛪 👼 🖻 Q. + 📐 📆 🗮 + Q. 🔪 + 🔜 Background Layout - Theme Transition		^	
4	Martine United States			
4. Fac	$\int_{1}^{1} \int_{1}^{1} \int_{1$			0
5				
	$0 = \frac{\chi - 3 + 5}{\chi - 3 + 5} \qquad g(x) = \frac{\sqrt{4 - x}}{(x + 1)(x^2 + 1)}$			
	Define the interval			
,,,,,,,	Use here, if more practice time is needed for stamping.		۵	>

Practice ANSWERS

• Find the domain and x & y intercepts of...

$$f(x) = \frac{1}{x} + \frac{5}{x-3} \qquad h(x) = \frac{\sqrt{4-x^2}}{x-3}$$

$$Domain: (-\infty, 0) \cup (0,3) \cup (3,\infty) \qquad Domain: [-2,2]$$

$$x - \text{int}: (0.5, 0) \qquad x - \text{int}: (2, 0), (-2, 0)$$

$$y - \text{int}: None \qquad g(x) = \frac{\sqrt{4-x}}{(x+1)(x^2+1)} \qquad y - \text{int}: (0, -\frac{2}{3})$$

$$Domain: (-\infty, -1) \cup (-1, 4]$$

$$x - \text{int}: (4, 0) \qquad y - \text{int}: (0, 2)$$

Notes Day 2

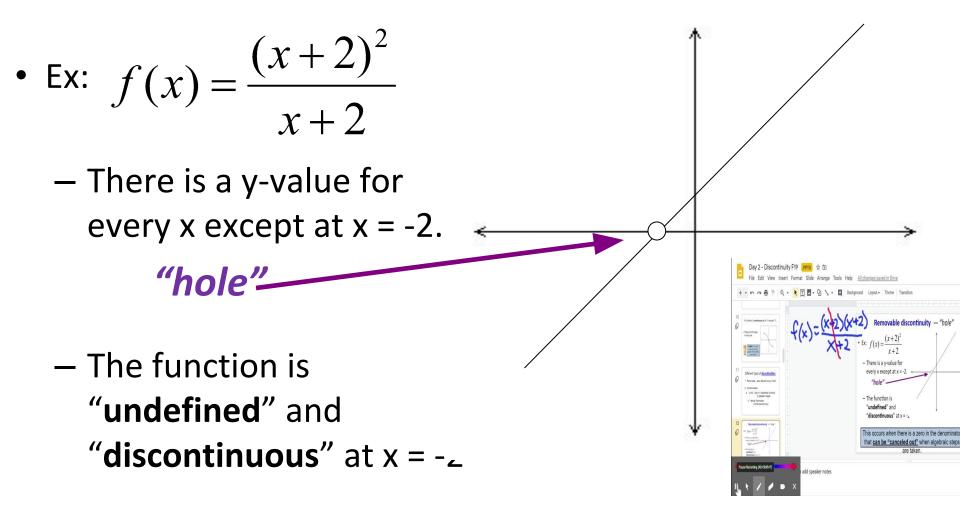
Section 1.2—Domain, Continuity, Discontinuities

Defining Continuity

A function is <u>continuous</u> at a point if the graph does not come apart at that point.

Try graphing these:

- Ex: $y = -x^3$
- Ex: $f(x) = e^{2x} + 7$
- Ex: g(x) = |x 6|
- Ex: h(x) = $\sqrt{x+2}$

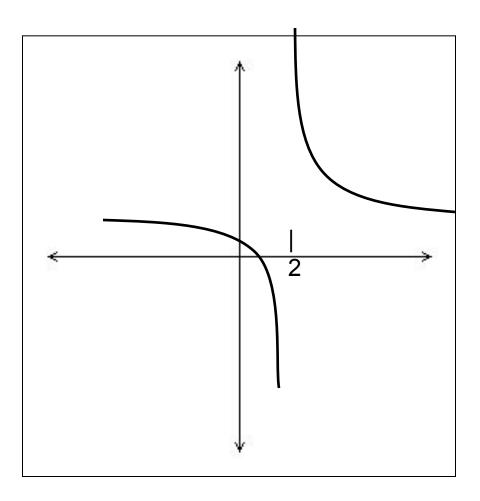

A function is **continuous** at all "x-values" if . . .

 There are NO breaks in the curve. Notice: You can trace the entire graph without lifting your pencil!

Different Types of <u>discontinuities:</u>

- 1. Removable also referred to as a "hole"
- 2. Nonremovable
 - a. "Jump" (occur in piecewise functions or greatest integer)
 - b. Vertical Asymptote (infinite discontinuity)

This occurs when there is a zero in the denominator that can be "canceled out" when algebraic steps are taken. Jump Discontinuity – the curve "jumps" from one y-value to the next (NONREMOVABLE)


Notice: this graph still has a y-value for every x.

Notice: this one doesn't

Nonremovable Discontinunity (Vertical Asymptote)—Infinite Discontinuity

• Ex:
$$f(x) = \frac{x+3}{x-2}$$

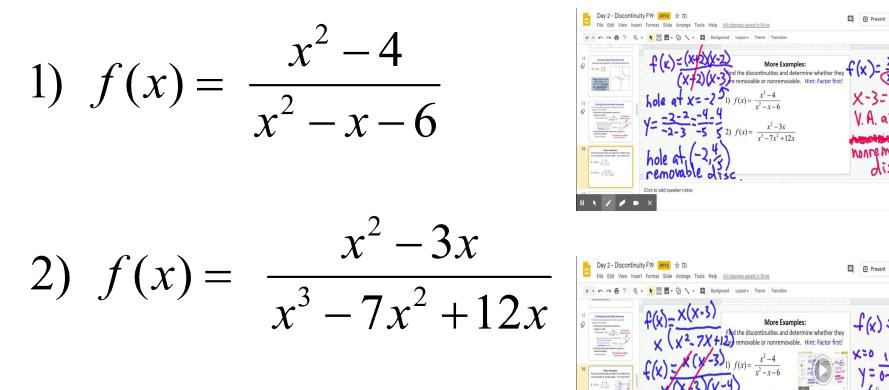
There is a zero in the denominator of a function that <u>cannot</u> <u>be "canceled out"</u> through algebra.

Finding Discontinuities Summary

- To find vertical asymptotes and holes, factor the problem and simplify.
 - If the factor in the bottom cancels out,
 - it gives us a hole.
 - Removable $f(x) = \frac{x+2}{(x+2)(x-1)}$

How do you find the y-value of the hole? Simplify and substitute the x-value into the remaining equation! $f(-2) = \frac{1}{-2}$

- If the factor does not cancel out, it gives us a vertical asymptote.
 - Nonremovable


The vertical asymptote for f(x) is at x = 1

So the hole

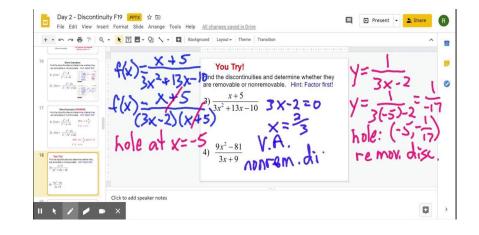
occurs at x = -2

More Examples:

Find the discontinuities and determine whether they are removable or nonremovable. Hint: Factor first!

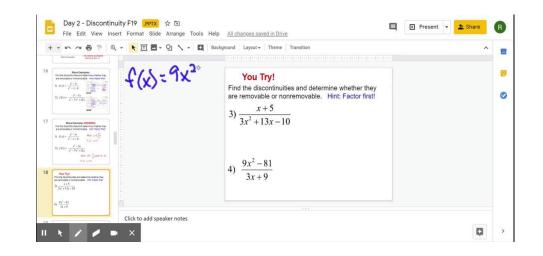
Click to add speaker notes

More Examples **ANSWERS**:


Find the discontinuities and determine whether they are removable or nonremovable. Hint: Factor first!

1)
$$f(x) = \frac{x^2 - 4}{x^2 - x - 6}$$

Hole: $(-2, \frac{4}{5})$
 $V.A. \quad x = 3$
2) $f(x) = \frac{x^2 - 3x}{x^3 - 7x^2 + 12x}$
Hole: $(0, -\frac{1}{4})$ and $(3, -1)$
 $V.A. \quad x = 4$


You Try!

Find the discontinuities and determine whether they are removable or nonremovable. Hint: Factor first!

$$3) \frac{x+5}{3x^2+13x-10}$$

$$4) \quad \frac{9x^2 - 81}{3x + 9}$$

You Try! ANSWERS

Find the discontinuities and determine whether they are removable or nonremovable. Hint: Factor first!

3)
$$\frac{x+5}{3x^2+13x-10} = \frac{x+5}{(x+5)(3x-2)}$$
 Hole: $(-5, -\frac{1}{17})$
 $= \frac{1}{(3x-2)}$ V.A. $x = \frac{2}{3}$

Hole: (-3, -18)

V.A. None

4)
$$\frac{9x^2 - 81}{3x + 9} = \frac{9(x + 3)(x - 3)}{3(x + 3)}$$
$$= 3(x - 3)$$

Student Practice:

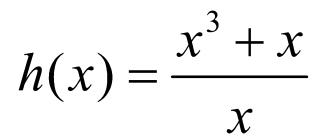
- A) Classify the function as continuous or discontinuous.
- B) If discontinuous, specify the type of discontinuity and where it exists.
- C) State the domain and x & y intercepts.

1)
$$f(x) = (x+3)(x-2)$$

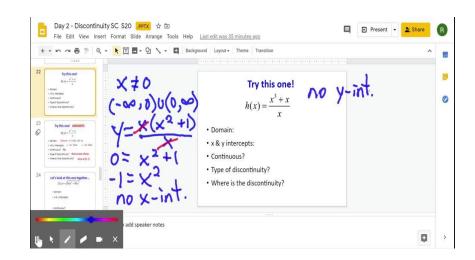
2)
$$f(x) = \frac{x^2 - 4}{x - 2}$$

Student Practice: ANSWERS

- A) Classify the function as continuous or discontinuous.
- B) If discontinuous, specify the type of discontinuity and where it exists.
- C) State the domain and x & y intercepts.


1)
$$f(x) = (x+3)(x-2)$$

Continuous Domain: $(-\infty, \infty)$ x - int: (-3, 0), (2, 0)y - int: (0, -6)

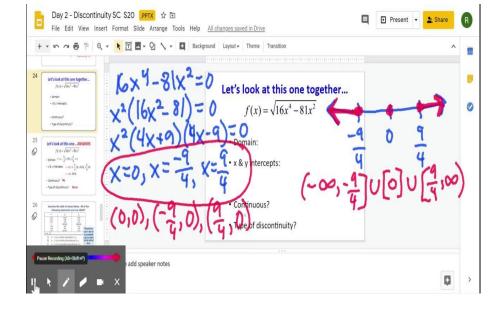

2)
$$f(x) = \frac{x^2 - 4}{x - 2}$$

Discontinuous – removable (hole) Hole at (2, 4)Domain: $(-\infty, 2) \cup (2, \infty)$ x - int: (-2, 0)y - int: (0, 2)

Try this one!

- Domain:
- x & y intercepts:
- Continuous?
- Type of discontinuity?
- Where is the discontinuity?

Try this one! ANSWERS


$$h(x) = \frac{x^3 + x}{x}$$

- Domain: *Domain*: $(-\infty, 0) \cup (0, \infty)$
- x & y intercepts: x int: None y int: None
- Continuous? No
- Type of discontinuity? **Removable (Hole)**
- Where is the discontinuity? Hole at (0, 1)

Let's look at this one together...

$$f(x) = \sqrt{16x^4 - 81x^2}$$

- Domain:
- x & y intercepts:

- Continuous?
- Type of discontinuity?

Let's look at this one... ANSWERS

$$f(x) = \sqrt{16x^4 - 81x^2}$$

- Domain: $(-\infty, -\frac{9}{4}] \cup [0] \cup [\frac{9}{4}, \infty)$
- x & y intercepts: $x int : (-\frac{9}{4}, 0), (0, 0), (\frac{9}{4}, 0)$

$$y - int: (0, 0)$$

- Continuous? No
- Type of discontinuity? None

Examine the table of values below. All of the following statements are true EXCEPT

	x	${\mathcal Y}_1$	${\cal Y}_2$				
-	2.03	-66.67	-4.03				
-2.02		-100	-4.02				
-	2.01	-200	-4.01				
	-2	ERROR	ERROR				
	1.99	200	-3.99				
-1.98		100	-3.98	Tomorrow,			
-1.97		66.667	-3.97	- you'll do an			
x = -2	Asymptote						
Α.	Lab to learn						
Β.	x = -2 is a	more about this.					
C.	C. $x = -2$ is a removable discontinuity in y_2						
D.	$x = -2$ is a vertical asymptote in y_2						

Looking at y₂, the y's are in order, but y = -4 was skipped, so there is a Removable Discontinuity (Hole) at (-2, -4)

Definition of Degree

• **Degree of a polynomial in one variable:** the value of the greatest exponent

Ex:
$$f(x) = 4x^2 + 9x + 8$$

Degree: 2

Ex:
$$g(x) = -5x^3 + 6x^2 + 4x$$

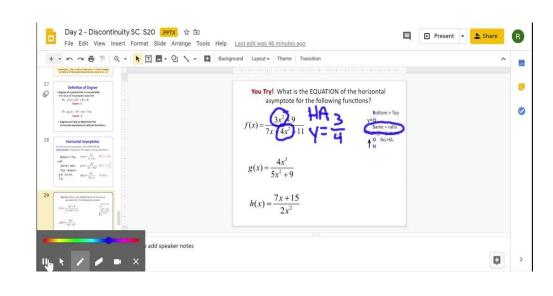
Degree: 3

 Degree can help us determine the horizontal asymptote of rational functions...

Horizontal Asymptotes

For horizontal asymptotes, think BOSTON for **polynomials**! Looking at the degree of top & bottom...

Bottom > Top
$$f(x) = \frac{2x}{x^2 + 3x}$$
 $H.A.: y = 0$
 $y=O$
Same = ratio $g(x) = \frac{2x^3}{5x^3 + 4x^2}$ $H.A.: y = \frac{2}{5}$
Top > Bottom
 $\uparrow O$ No HA. $h(x) = \frac{5x^2}{7x + 3}$ No H.A.


You Try! What is the EQUATION of the horizontal asymptote for the following functions?

$$f(x) = \frac{3x^2 + 9}{7x + 4x^2 + 11}$$

Bottom > Top y=O Same = ratio Top > Bottom ↑ 0 No HA. N

$$g(x) = \frac{4x^3}{5x^2 + 9}$$

$$h(x) = \frac{7x + 15}{2x^2}$$

You Try! What is the EQUATION of the horizontal asymptote for the following functions?

$$f(x) = \frac{3x^2 + 9}{7x + 4x^2 + 11} \qquad H.A.: y = \frac{3}{4} \qquad \begin{array}{c} y = 0 \\ \text{Same = ratio} \\ \text{Top > Bottom} \\ \uparrow \\ N \end{array}$$

$$g(x) = \frac{4x^3}{5x^2 + 9}$$

H.A. : *none*

Bottom > Top

$$h(x) = \frac{7x + 15}{2x^2}$$
 H.A.: $y = 0$

You Try: True or False

 The graph of function f is defined as the set of all points (x, f(x)) where x is in the domain of f. Justify your answer.

2) If a function is not continuous, then the domain cannot be all real numbers.

True or False ANSWERS

 The graph of function f is defined as the set of all points (x, f(x)) where x is in the domain of f. Justify your answer.

True! This is the definition of a function.

2) If a function is not continuous, then the domain cannot be all real numbers.

False! It could be a piecewise function.

Is this continuous?

State whether the scenario is continuous or discontinuous.

- A) Outdoor temperature as a function of time. **Continuous**
- B) Number of soft drinks sold at a ballpark as a function of outdoor temp.
 Discontinuous
- C) Your hair length as a function of days in a year

Continuous

•Packet p. 2-3