Day 2

Limit Definition of Derivatives

The Algebra Behind Derivatives

Warm Up: Given the function $f(x) = x^2 + 7$:

- Find:
- 1. f(x + 3) =
- 2. f(x + h) =
- 3. $\lim_{h \to 0} \frac{f(x + h) f(x)}{h}$

4.
$$\frac{x}{3} + \frac{2x}{4}$$

5.
$$\frac{3}{x} + \frac{4}{x-2}$$

V C	Varm Up Given the	ANSWE function f	RS: (x) = x ²	+ 7, fir	nd:
1.	f(x + 3)=	$x^2 + 6x$	+ 16		
2. $f(x + h) = x^2 + 2hx + h^2$					
3.	lim <u>f(x</u>	<u>x + h) - f(x</u>	() = 2 X		
	h → 0	h			
4.	$\frac{x}{3} + \frac{2x}{4}$	$=\frac{4x}{12} + \frac{6x}{12}$	$=\frac{10x}{12}=$	$=\frac{5x}{6}$	
5 .	$\frac{3}{x} + \frac{4}{x-2} =$	$=\frac{3(x-2)}{x(x-2)}+\frac{1}{x}$	$\frac{4x}{x(x-2)} =$	$\frac{7x-6}{x(x-2)} =$	$=\frac{7x-6}{x^2-2x}$

HW Questions???

Notes on Derivatives

A Summary

Limit Definition of Derivative

• Remember that :

$$\frac{f(x+h) - f(x)}{x+h-x} = \frac{f(x+h) - f(x)}{h}$$

for h values approaching 0.

- Since we cannot let h = 0, we find the $\lim_{h \to 0}$.
- Thus, the limit definition of a derivative is

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Example 3: **Evaluate the derivative using the limit definition of derivatives.** $\lim_{h \to h} \frac{f(x+h) - f(x)}{h}$

• Function:
$$f(x) = \sqrt{x-2}$$

For Square Root problems, you must use the conjugate!

h

 $h \rightarrow 0$

$$=\frac{1}{2\sqrt{x-2}}$$

Practice...

• Find the derivative of the following using the limit definition of derivative.

$$f(x) = \sqrt{x+4}$$

$$=\frac{1}{2\sqrt{x+4}}$$

Example 4:

Evaluate the derivative using the limit definition of derivatives. $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$

• Function: $f(x) = \frac{1}{x+1}$

Practice...

• Find the derivative of the following using the limit definition of derivative.

$$f(x) = \frac{1}{x - 3}$$

$$=\frac{-1}{x^2-6x+9}$$

Homework

- Finish Classwork p. 2
- Definition of Derivative p. 3

Next slides...

• Skipped for Fall '18...did a different method of derivative discovery for this semester

Derivatives Discovery with TI-83/84 #1-7, 11-18

