Day 1

Unit 5 - Intro to Derivatives \&
Limit Definition of Derivative
For Polynomials

Warm Up

1) Given $f(x)=x^{2}-2 x+1$, evaluate
a) $f(x+7)$
b) $f(x+h)$
c) $f(x+h)-f(x)$
2) Find $f(g(x))$ and its domain.

$$
f(x)=\frac{x^{2}-4 x}{x^{2}} \quad g(x)=\sqrt{7-x}
$$

3) Find the slope given $h(2)=3$ and $h(5)=-4$
4) Write an equation for the line in \#3 in slope-intercept form.

Warm Up ANSWERS

1) Given $f(x)=x^{2}-2 x+1$, evaluate
a) $f(x+7)$
b) $f(x+h)$
c) $f(x+h)-f(x)$
$2 h x+h^{2}-2 h$

$$
x^{2}+2 h x+h^{2}-2 x-2 h+1
$$

2) Find $f(g(x))$ and its domain.

$$
7-x-4 \sqrt{7-x}
$$

$f(x)=\frac{x^{2}-4 x}{x^{2}}$
$7-x$
Domain: $(-\infty, 7)$
3) Find the slope given $h(2)=3$ and $h(5)=-4$

$$
m=-7 / 3
$$

4) Write an equation for the line in \#3 in slope-intercept form.

$$
y-3=-\frac{7}{3}(x-2) \quad y=-\frac{7}{3} x+\frac{23}{3}
$$

Discuss HW

o PreRequisite Review for Unit 5 Handout

Tonight's HW

o Finish Classwork if necessary
o Packet p. 1

Notes Day 1

Intro to Derivatives
And Limit Defn. of Deriv.

Introduction to Derivatives Webquest

o Answer the questions on the handout.
o Take Notes on other key points! :)
o Be prepared to discuss afterwards.

Secant vs Tangent

- Tangent lines touch a curve at one point
o Slope at that one point is instantaneous rate of change.
- Secant lines cut through a curve at two points
- The slope of a secant line between those two points it is called the average rate of change.

Slope - all the same!

$$
\begin{aligned}
& m=\text { rate of change }=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{\text { change in } \mathrm{y}}{\text { changein } \mathrm{x}}=\frac{\Delta y}{\Delta x} \\
& m=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}} \text { where }:\left(x_{1}, f\left(x_{1}\right)\right) ;\left(x_{2}, f\left(x_{2}\right)\right) \\
& m=\frac{f(x+h)-f(x)}{x+h-x} \text { where }:(x, f(x)) ;(x+h, f(x+h))
\end{aligned}
$$

Use Secant or Tangent?

- Tangent lines are REALLY hard to draw. So you can draw a secant line and calculate its slope as one point on the line gets closer and closer to the point of tangency (thus, making the secant line into the tangent line).
- Of course, the change in x (the h here) would be 0 if the two points actually made it on top of each other.
o That's where the idea of limits comes in here!

Limit Definition of Derivative!

Building off of the last slope you wrote down

$$
m=\frac{f(x+h)-f(x)}{x+h-x}
$$

The Limit Definition of Derivative is

$$
f^{\prime}(x)=\frac{d}{d x} f(x)=
$$

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Limit definition of derivative

The derivative with respect to x is

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

The derivative is

- The slope of the tangent line at a single point on the curve.
- The Instantaneous rate of change

What do we need to write an equation of a line?

1) One point and slope; then use point slope formula

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

2) Two points; then compute the slope and use one of the points in the point slope formula
\rightarrow We'll do this at a later date!!

Notation of Derivative

0 Given $f(x)=3 x^{2}+5 x$.

$$
\frac{d y}{d x}, y^{\prime}, f^{\prime}(x)
$$

We could say...
of $f^{\prime}(x)=6 x+5$ or f^{\prime} or y^{\prime} is called
$0 y^{\prime}=6 x+5$ or
"f prime or y prime"
$0 \frac{d y}{d x}=6 x+5 \quad \frac{d y}{d x}$ is said

Why are there 2 notations for derivatives?

o Due to history!
o There were 2 founders of Calculus - at the same time - Leibniz and Newton.
o https://youtu.be/axZTv5YJssA

Example 1:

Evaluate the derivative using the limit definition of derivatives. $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
o Function: $f(x)=4 x+9$

$$
=4
$$

Example 2:
Evaluate the derivative using the limit definition of derivatives. $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
o Function: $f(x)=x^{2}+2 x+3$

Classwork: Packet p. 2

o What did the ninja turtles say when handed the expression....?

HW:

Packet p. 1

On next slides...

Introduction to Limits videos

College Math Lecture Videos

o Be attentive!
o Take Notes!
o Be prepared to discuss at the end!

College Math Lecture Videos

o https://www.youtube.com/watch?v=jbIQW Ogkgxo
o MIT- Lecture 1 Single Variable Calculus

0 https://www.youtube.com/watch?v=54 X RjHhZzl
o NC State- Introduction to Limits

Next slides...

Saved for Day 2 discussion and practice for Spring '18 and Fall '18 and Spring ‘19

Example 3:
Evaluate the derivative using the limit definition of derivatives. $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

- Function: $f(x)=\sqrt{x-2}$

Example 4:
Evaluate the derivative using the limit definition of derivatives. $\quad \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

- Function: $f(x)=\frac{1}{x+1}$

$$
=\frac{-1}{x^{2}+2 x+1}
$$

